Reproducing Expert-Like Motion in Deformable
Environments Using Active Learning and I0C

Calder Phillips-Graf in and Dmitry Berenson

Abstract We propose a method that allows a motion planning algorithimitate
the behavior of expert users in deformable environmentsiristance, a surgeon
inserting a probe knows intuitively which organs are moresgieve than others, but
may not be able to mathematically represent a cost fundtiaingoverns his or her
motion. We hypothesize that the relatsensitivitiesof deformable objects are en-
coded in the expert's demonstrated motion and present eefwank which is able
to imitate an expert's behavior by learning a sensitiviaséd cost function under
which the expert's motion is optimal. Our framework corsist three stages: (1)
Automatically generating demonstration tasks that prothetuser to provide in-
formative demonstrations through an active learning o) Recovering object
sensitivity values using an Inverse Optimal Control tegaei and (3) Reproduc-
ing the demonstrated behavior using an optimal motion aile have tested our
framework with a set of 5DoF simulated and 3DoF physicaléestronments, and
demonstrate that it recovers object parameters suitabl@daning paths that imi-
tate the behavior of expert demonstrations. Additiona#y,show that our method
is able to generalize to new tasks; e.g. when a new obstagigdasluced into the
environment.

1 Introduction

Manipulation of deformable objects, and in deformable enwinents, is an impor-
tant area of research, as deformable objects are commomiasiiz, industrial, and
medical environments. Unlike manipulation in rigid envineents, where collisions
are forbidden, deformable environments allow, and ofteuire, collisions between
a robot and deformable objects. However, modeling defotenaijects is a dif cult

problem; models must not only capture the geometry (undefdrand deformed)
of objects (itself a very dif cult problem), but should als@apture the sensitivity
of the object. This qualitative aspect is critical for def@ble environments, as it
allows a motion planner to distinguish between multiplesckg with similar phys-

ical properties but with different qualitative characstids. An important example
of this occurs in surgical robotics; while multiple orgamsldissues may have sim-

Worcester Polytechnic Institute, 100 Institute Rd, WoregsviA 01609 USA

e-mail: cnphillipsgraf @wpi.edu, dberenson@cs.wpi.edThis work is supported in part by the
Of ce of Naval Research under Grant N00014-13-1-0735 anthbyNational Science Foundation
under Grant 11S-1317462.

2 Calder Phillips-Graf in and Dmitry Berenson

P edge \/\ ».L/.)
D i Samples
O Simulator ‘3 ﬂ u Planned Path
K -
Ptarget aremin Z Sl Vi L
grmins P => RRT* Motion Planner
Y S Vi
1=1
Active Learning for Demonstration Generation Parameter Recovery (I0C) Parameter Verification

Fig. 1: Diagram of the three stages and main components of our frarkew

ilar physical properties, some parts of the body are sigamtty more sensitive than
others. Without accounting for sensitivity, motion plarsiean produce paths that
could cause unnecessary injury.

The motion planning methods introduced in our previous Wbé} use a voxel-
based representation of deformable objects, in which eaxél has two parameters.
The rst parameterdeformability captures physical properties of the rigidity of the
material. The second parametsensitivity captures the qualitative signi cance of
deforming the object. Together, these parameters are nsadost function that
provides a cost of deformation that can be used in cost-amat®n planners.

While the deformability parameters are directly relatedraterial properties,
setting the sensitivity parameters is more dif cult, asytliapture a range of ob-
ject characteristics. Setting them by hand is time-conagnaind error-prone, as
incorrect sensitivity values can produce unwanted plahabkavior. More problem-
atically, setting these parameters for practical envirenis requires both domain
knowledge and the ability to mathematically represent Kmaiwledge such that
the planner will perform well. Instead, we propose a framgwior automatically
learning and validating these parameters from expert dstrations. For example,
a surgeon can demonstrate the optimal path for insertin@lepand we can use
this demonstration to nd the sensitivity values of organsuamd the path.

Our framework consists of three parts: (1) Automatic get@neof demonstra-
tion tasks that prompt the user to provide informative destrations through a
novel active learning process; (2) Recovery of object sieftgivalues usingPath
Integral Inverse Reinforcement Learni{BIIRL) Inverse Optimal Control (I0C)
technique [10]; and (3) Reproduction of the demonstratédbier using the RRT*
asymptotically-optimal motion planner [12] with a key madition that allows us
to check for punctures of deformable objects.

This approach offers two main advantages over existingait@chniques. First,
by using sampling-based techniques for IOC that avoid tlee t@solve the forward
problem and sampling-based asymptotically-optimal péesour framework is ap-
plicable to higher-dimensional problems than approachek as LEARCH [17],
which are limited by the need to repeatedly compute optinatthgto recover the
cost function. Second, our proposed method for automatigeherating demon-
stration tasks for experts to perform reduces the numbereofahstration tasks
needed to capture the desired behavior and removes thearedmhfiain knowledge

Reproducing Expert-Like Motion in Deformable Environment 3

to generate these tasks by hand. Finally, to our knowled@€, has never before
been applied to the problem of learning deformable objexdrpaters.

In our experiments in simulated and physical test envirantmae show that,
despite the limitations inherent in asymptotically-omirsampling-based planning,
the recovered sensitivity parameters allow motion plasiterreliably reproduce
behavior demonstrated by expert users. We also presentimgmds which show
the generalization capabilities of our method.

2 Related Work

Extensive work on the modeling and representation of deddtenobjects has been
done, primarily from the perspectives of computer grapftand medicine [2]. In
recentyears, this work has been adopted by the roboticdoedthable the manipula-
tion of real-world deformable objects such as clothingerdpod, and human tissue
[8]. A wide range of simulation-based models for deformatiigects are available,
most of which are meshed models based on Mass-Spring (MISn® Finite-
Element (FEM) [14, 7], but mesh-less models [13, 5, 16] hdse been proposed.
Our model replaces the need for physical simulation withst imction based on
the volume of intersection between voxelized deformabl dgid objects [16].
While this approach cannot capture moving objects, and cdnapproximate the
true deformation, it is extremely ef cient to compute in cpamison to simulation-
based methods, and thus ideal for use inside a motion plaNo#ably, because
our approach provides a cost function that accounts for blojict deformation and
sensitivity, it produces plans that minimize deformatiol @referentially deform
or avoid objects based on their sensitivity.

Inverse Optimal Control (IOC) is the problem of recoverihg tost or reward
function being optimized by a trajectory or policy. Intrashd by Kalman [11] and
applied to robotics by Ng et al. [15], several different faations of the IOC prob-
lem and algorithms to address it have been proposed, coMeoith continuous and
discrete state spaces [15]. Earlier approaches to the 10Kklgim, such as appren-
ticeship learning, require that the forward problem be sdlin addition to com-
puting optimal weights [1, 17]. More recent approachesebdam the maximum
entropy principle, replace the need for solving the forwamblem by using sam-
ple trajectories around the demonstration [19].

The IOC approach we us@ath Integral Inverse Reinforcement Learni(fj-
IRL) samples around the demonstration instead of solviaddtward problem [10].
In the PIIRL formulation, a series of locally-optimal denstration trajectories are
gathered from the user(s). For each of these demonstraticaes of sample trajec-
tories around the demonstration is generated; note ths¢ t@mples are assumed to
be sub-optimal relative to their demonstration. For all dastrations and all sam-
ples, user-speci ed features are evaluated, and the wemggociated with these
features are then recovered via a convex optimization prolthat attempts to max-

4 Calder Phillips-Graf in and Dmitry Berenson

imize the margin between the features of the demonstragindshe features of the
samples.

3 Problem Statement

Let t represent the path of a rigid object (i.e. the robot) throaghenvironment

sequence of con gurations, we assume the cost of execuiting function of the

o

formC(t) = éjktzj 18it 1 DiSVi(tk), whereVi(ty) is the volume of deformation &
that results from placing the rigid object at thilh con guration of patht, D; is
the deformability ofO;, andS is the sensitivity of0;. We focus on learning th§
parameters, so we assui@e= 18i, though our methods work with any knovin
Note that while sensitivity parameteBsan be set per-voxel in our representation,
we simplify the problem of recovering sensitivities by assug that each object has
uniform sensitivity.

Srepresents the ground-truth sensitivities of the objaMs.seek to generate a
set of learned parametesfrom a set of demonstrations, such that th8sn be
used in a motion planner to produce similar behavior to theatestrations. Obtain-
ing the trueSfrom demonstration is not possible in general, as a demetittrcan,
at best, encode only the ratios between different elemdn$sand not their mag-
nitudes. Thus it is not meaningful to compa&¢o édirectly. A more informative
comparison is in how well a planner imitates demonstratébier when planning
with S Thus we evaluate our method in terms of the cost of the pattiymed by
our framework. Therefore the quality &frelative to the ground truth is evaluated
asE(S9 = Cs(td) Cs(tplamed), Wheretq is a path demonstrated for a given
task,tp|anne((§) is a path planned for the same task using the sensitiiiaad the
cost functiorCg() is evaluated using the ground-truth sensitivitges

4 Methods

We have developed a framework for recovering sensitivityapeeters for de-
formable objects, as illustrated in Figure 1. Below we diésceach of the four
components in detail.

4.1 Capturing Demonstrations

Like all IOC problems, our approach requires demonstratitmour case, demon-
strations are captured in a simulation environment usingyaips simulator to sim-
ulate deformable objects. Our demonstration task consistserting a cylindrical
probe between deformable objects to reach target pointshdited across the en-
vironment, as illustrated in Figure 2. The user attempts iwimize contact with
more sensitive objects (shown in yellow and green) comptaréeks sensitive ob-
jects (shown in blue). We record the demonstration trajg@tong with the features

Reproducing Expert-Like Motion in Deformable Environment 5

(@ (b) (c) (d)

Fig. 2: Example demonstration tasks for our 6-object test envieartmshown with the probe
reaching the target. (a) Low sensitivity objetts L, (blue), medium sensitivity objectdl;; M,
(green), and high sensitivity objecks ;H, (yellow). (b,c,d) Goal con gurations for three auto-
matically generated tasks.

of that trajectory, which are the total amounts of defororatif each object. While
outwardly simple, the problem of probe and needle insefetween deformable
objects such as this is common in medical tasks [2] and a subjerevious re-
search in robot motion [2, 13], however, none of this work &sglored learning
qualitative properties of deformable objects to deternhiiggner-level behavior. In
addition to capturing demonstrations, we use this simuta¢invironment to com-
pute feature vectors for demonstration and sample paths.

Each demonstration we capture can be parametrizediamanstration tasky
a starting pose of the prolRar, a target poinBarget the user must touch with the
probe tip, and a set of “collision plane€’planes hyperplanes that constrain the
motion of the probe. As shown in Figure 3, the hyperplanes@apmate a funnel
that guides the user towards the target point and restrigishvobjects the user can
contact with the probe. These hyperplanes are added toraongte user to pro-
ducing demonstrations that capture the relative diffeeénsensitivity between the
accessible objects. In our experience, without the hypagd users sometimes pro-
duce demonstrations that deform only the globally leassisige object(s) instead
of capturing sensitivity relationships between neighbgibjects.

While we attempt to capture optimal demonstrations, inficaaisers may pro-
vide slightly sub-optimal demonstrations. We attempt toect for this using a local
optimizer that optimizes each demonstration. This mettesetgates a set of random
sample trajectories around the demonstration trajectudyr@places the demonstra-
tion trajectory with any of the random samples with strictminating deformation
(i.e. the random sample deforms all objects less than ol égttee demonstration).

4.2 Active Learning

We can capture demonstrations and compute features forrdgrations and sam-
ples needed for PIIRL; however, this leaves two problemsitiress: how to gen-
erate demonstration tasks for the user to complete, and hany glemonstrations
must be collected. Clearly, the accuracy of recovered geihsivalues depends on
the quality of the demonstrations provided. For examplanibbject has zero fea-

6 Calder Phillips-Graf in and Dmitry Berenson

Algorithm 1 Demonstration task collection algorithm

procedure COLLECTDEMONSTRATIONSA)
G f 0,09
O; argmaxye degre€A(o))
Oz argmaxaneighborga(oy)) degree(A(0))
G G[COLLECTSINGLEDEMONSTRATIONO1; O2)
while fo2 Ejo 2 G,;degre¢A(0)) > 0g 6 0do
O1 argmaXq2g,jneighborA(o))nGys og d€Pt{G(0))
Oz argmaXezneighborga(0y))nG,g d€gre€A(0))
G G[COLLECTSINGLEDEMONSTRATIONO7;O2)
G ENSURERANKING(G)
return G
procedure ENSURERANKING (G)
for O; 2 G, do
for fO2 2 G,j depti{G(0O2)) depti{G(0O1))g do
if NODIRECTEDPATHEXISTHO1;05) then
if DIRECTLYCOMPARABLE(O;;Oy) then
G G| COLLECTSINGLEDEMONSTRATIONOz;O2)
return ENSURERANKING(G)

return G
procedure COLLECTSINGLEDEMONSTRATION(Oy; O5)
Rarget: Pedge Cplanes GENERATEDEMONSTRATIONTASK(O1; O2; Telearance Trange)
Dy;De GETDEMONSTRATIONFROMUSER Rarget; Pedge Cplanes
return (Dy; De)

ture values in both demonstrations and the trajectory sesmglound the demon-
strations used by PIIRL, we cannot recover a meaningfulisensvalue for the
object; e.g. if all demonstrations entered through the &dahalf of our cube en-
vironment, no features would be available for objects onrdwerse. A different,
but equally problematic, issue occurs when features hage bellected for every
object, but the demonstrations are “unconnected”; for gptanin an environment

E = fOq;05;03;04q, if features have been collected for demonstrations betwee
0O1; 0, andOg; O4, but not forOy; O3, the optimizer cannot determinel@f; andO,

are more or less sensitive thag andO4. Thus, we need to ensure that suf cient
demonstrations have been collected.

The conservative solution is to require a demonstratiorefary pair of adja-
cent objects, however, this can result in a large number wiodestrations. For our
test environment shown in Figure 2, 12 demonstrations wbaldequired to cap-
ture the relationship between every adjacent pair. We sesdduce the number of
demonstrations required.

Simply collecting demonstrations such that we observe azeva feature for
each object is insuf cient for accurate parameter recovexther, we must ensure
that the demonstrations collected fornramking of the objects in terms of sen-
sitivity; i.e. that for object91;0, 2 E, rank(O,) is either less than, equal to, or
greater tharrank(Oy) if the objects are comparable. Rankings are derived from
demonstrations collected between adjacent objects; #fenentially-deformed ob-
ject receives a lower ranking than the preferentially-dedi object. Rankings are

Reproducing Expert-Like Motion in Deformable Environment 7

Algorithm 2 Demonstration task generation algorithm

procedure GENERATEDEMONSTRATIONTASK(Oy; O2; Telearance Trange)

Pedge GETEDGEPOINTBETWEENOBJECTO1;02)
Ptarget 0
while Rarget = 0 do

Psampled SAMPLEINRANGE(Peqge Trange)

if clearanc€Psampled < Telearancethen

Ptarget Psam pled

Cplanes GENERATECOLLISIONPLANES(Peqge Rarget)
return Rarget; Pedge C planes

not comparable in certain cases, such as between objedte @pposing faces of
our test environment, in which itimpossible to perform a destration between the
two objects, and they cannot be ranked via a combinationhafratemonstrations.

Demonstrations are collected using Algorithm 1, which skethe set of object
adjacencies irE, and iteratively collects demonstrations until there anenmore
useful demonstrations to perform. This algorithm captpre$erence relationships
between objects by building a directed graphThe nodes irG represent objects
in the environment and the directed edges point from thedeasitive object to the
more-sensitive one. Initially{g contains no nodes or edges, and each demonstration
adds an edge and 0, 1, or 2 nodes. The key to the algorithmesndieing which
demonstration (and thus which edge) should be queried next.

The algorithm uses the structure®fat the current time as well as a heuristic to
decide which demonstration to query next. If the rankingMeen all objects irG
is known, then the algorithm selects a new object to add {wia a demonstration
involving that object and one already @). After adding a new object, the algo-
rithm queries demonstrations until the ranking of all obgeia the graph is again
established (this is done in theNBURERANKING function). It then selects a new
object to add, and so on, until no more objects can be added.

At each step where objects or edges are selected, we chaoebjdtt or edge
based on connectivity heuristics. For new objects (i.es¢hwot already irts), we
prefer those that are adjacent to as many other objects aghgo3Nhen picking
objects already in G for a new edge, we prefer objects that havigher “depth”.
Here deptln) is the length of the longest directed patiGrwhich ends ah. These
heuristics bias the algorithm to create long chains of eddnese possible, which is
clearly bene cial for forming a ranked list; e.cank(O;) < rank(O,) < rank(O3) <
rank(Og) is a chain of three edges which gives a complete ranking afdbjects.

Algorithm 1 is not guaranteed to produce the minimal set ofidestrations be-
cause it cannot foresee the results of future demonstmatibfrequently collects
demonstrations early on that prove to be unnecessary inrthleset of demonstra-
tions. In pathological environments, Algorithm 1 may becft to collect all pos-
sible demonstrations. However, in practice, we show thegdtices the number of
demonstrations without signi cant impact on the recovesedsitivity parameters.

8 Calder Phillips-Graf in and Dmitry Berenson

For each demonstration requested by Algorithm 1, we T

clearance

generate a new task using Algorithm 2. This algorithm i .
given a pair of target object®q;0,, a target clearance
Telearance aNnd a target depth randgnge First, the algorithm Prarger

selects an “edge pointReqgeby randomly selecting a point
on the medial axis between the two target objects. Using v_:le) .
edge point, the algorithm randomly samples nearby poilaé% 3: Our automatic

! . SR onstration task gen-
Trange away from the edge point to select one that is “insiderator.
1 the environment and also at le&@fearance@away from an
object, which it returns aBarget, the target point. Finally, a set of “collision planes”
are generated to restrict the user's demonstration to thiesdkearea. The parameter
Trange €Nsures that the user must insert the probe suf ciently trsealeformations.
Similarly, the parametefearance CONtrols how close to an object the target point
can be, and can be used to ensure that the target point gself in contact with an
object (see Figure 3).

Cplanes

4.3 Parameter Recovery

Our approach to motion planning for deformable objectspuhticed in [16], uses a
“cost of deformation” to enable any motion planner that aexte for cost to produce
plans that minimize deformation. We can frame the probleimahting demonstra-
tion behavior as the problem of inferring the sensitivitygraeters used to produce
the demonstration. Assuming that the demonstration isv@dtithis is the well-
established problem of Inverse Optimal Control (I0C).

Using the PIIRL formulation of IOC, the cost function consisf a series of

total cost of a con guratiol€ = 4{L,V;S, where theVi can be computed using our
physics simulator, but the optimal set of sensitivitgss unknown.

To nd the best estimate of the optimal set of sensitivit®PIIRL requires a
set of sample paths around each demonstration. Becausertiendtrations are as-
sumed to be locally optimal, all samples around a demoinstraiill be sub-optimal
w.r.t to the unknown cost function. F& demonstrations and samples for each
demonstration, the optimal weights are obtained usingdhevfing minimization
problem (a similar form of the minimization problem used 10]), whereVy are
the feature values for demonstratiorandV| are the feature values for samplef

1 To determine which points are “inside” the environment, wenpute a “local maxima map”
using the Signed Distance Field (SDF) of the environment.eaah point in the SDF, we follow
the gradient away from obstacles and record the locatiogr@gient becomes zero (i.e. the local
distance maxima). Points “inside” the environment haveesponding local maxima inside the
bounds of the SDF, while points “outside” have local maximaesponding to the bounds of the
SDF. Intuitively, “inside” points have nite-distance latmaxima reachable via the gradient, while
for “outside” points, the local maxima are unde ned.

Reproducing Expert-Like Motion in Deformable Environment 9
demonstratiot:
A K gy
S= argmins g S —
k=1 a STVk;I
=1

(1)

This minimization nds the sensitivity valuesthat maximize the margin between
the cost of the demonstrations and the costs of their saniyptes that in our prob-
lem, S> 0 and sample feature valudg, 6 0, as all sensitivity values must be
greater than zero and.; = 0 impliesVk = 0 (since samples must be sub-optimal
relative to their demonstrations), = 0 implies that the demonstratidncaptures
no information about any object and thus can be removed fhenoptimization so
this condition will not occur. Since this minimization pieln is convex, we can
use standard convex optimization solvers to nd optimalgis. Unlike previous
work such as LEARCH [17], PIIRL does not rely on the speci agqurations the
demonstration path traverses; rather, only the correspgiiieature values must be
locally optimal in our cost function [9]. This makes it trabte to learn cost func-
tions in high-dimensional spaces.

4.4 Recovered Parameter Veri cation

Once sensitivity value$ have been recovered for each object in our test envi-
ronments, we must verify that the recovered values allowmation planner to
imitate the behavior of the expert demonstrations. We gitetm perform each
demonstration task using an optimal motion planner and ewsimg the planned
pathtp|anneo(§) with the demonstrationy in terms of the true cost functioBs()
using the ground truth sensitivity valu&sIn our previous work, we used the T-
RRT and GradienT-RRT planners to ef ciently produce path&igh-dimensional
spaces [16]; however, since these planners have no opijngalarantees, they are
unsuitable for parameter veri cation. Instead, we use thgngtotically-optimal
RRT* planner [12] with our deformation cost function. Whilee could use de-
formations measured via a physics simulator to computedwoatg planning, our
voxel-based deformation cost function is signi cantlytas more stable, and de-
tects object punctures and separation. To accurately ntiraidemonstration tasks,
the RRT* planner is provided with the same task-space tqrgiett to reach with
the probe tip, rather than a goal con guration of the proleagible con gurations
touching this target point can be sampled, and RRT* attetgpt®nnect the tree
to these goal states. As RRT* runs, it improves the path byadied the deforma-
tion cost of the path and by sampling and connecting to nemedecost goal states.
Note that while RRT* isasymptoticallyoptimal, for nite time it will not return
the optimalpath, so we expect paths reproduced with RRT* may be slidfiglyer-
cost than their corresponding expert demonstrations, iutld exhibit the same
preferential deformation demonstrated by the expert.

10 Calder Phillips-Graf in and Dmitry Berenson

4

5
A

5

9, 9,~49, 9,~4,

Fig. 4: lllustration of puncture checking for an extension from gumation q; to gs. As the
surfaces are no longer connected (red), puncture has edcaind the}, ! gz motion is invalid.

In addition to integrating our existing cost function witfRRR*, we have signi -
cantly improved the quality of planned paths by adding purectietection to prevent
paths from puncturing or cutting deformable objects. Pumecand cut detection is
essential to planner performance; without it, plannerspraaduce low-cost paths
that pass directly though deformable objects. To preventfuies and cuts, we
check every extension of the tree in RRT* for puncture usimgharemental variant
of the algorithm introduced by Chen et. al. [3] for computingological invariants
on voxel grids. The original algorithm extracts the surfaeetices from the voxel
grid, and computes the connectivity of each surface veBagh surface vertex can
be connected to between one and six neighboring surfacieesrtetM1 be the
total number of surface vertices with one connected neighbd the total with two
neighbors, and so on. From these totals, Chen et. al. pravét number of holes
in the voxel grid isnhgles= 1+ ((M5+(2 M6) M3)=8).

Thus, checking for punctures can be implemented by remafiegwept vol-
ume of the path of the probe from the voxel-based model ofrdedble objects
used for motion planning, and then computing the number tfshtw ensure that
no new holes have been created by the path. Additionallyréaemt objects from
being completely cut apart by the path, the overall conaggbf the surface voxels
corresponding to each object are computed; if the surfatiees for an object form
multiple disconnected groups, then the object has beerpaut by the path.

To ef ciently perform these checks during the planning mes, we incremen-
tally check for punctures with each extension and rewirteg ©f RRT* (see Figure
4). For testing a new edge from con guratigg to con gurationgy the process is
as follows: (1) retrieve the stored object surfaces cooeding toq;, (2) update
the object surfaces with the swept volume frgmto g, (3) compute the number
of holes in each object surface (check for puncture), (4) mate the connectivity
of each object surface (check for cuts), and (5) if no holesuts are encountered,
store the updated surfaces correspondingptd-or every such check, we are effec-
tively checking the entire path from the start con guratimgy, to gy for punctures
and cuts.

Reproducing Expert-Like Motion in Deformable Environment 11

5 Results

We present results of testing our framework in a 3D simulatedronment (5DoF
probe insertion task) and in a physical planar environm@nbg rigid object nav-
igation task) using an industrial robot. We use the Bullefgits simulator [4] to
provide an environment for capturing demonstrations amdpeding features, and
the Open Motion Planning Library (OMPL) [18] to provide th&R* planner used
to verify the recovered sensitivity values. We show thatmethods accurately re-
cover sensitivity values that allow planners to imitate exxglemonstrations. We
also report on how the algorithm generalizes to a new taskrevan obstacle is in-
troduced into the environment, and report on the use ofatdizrning for reducing
the number of demonstrations required. Ideally, we woutdgare the performance
of our framework with existing approaches such as LEARCH,[h@wever, these
approaches require computing the true optimal path to parf®C, which is in-
tractable in the 5DoF probe insertion task.

5.1 Recovered Behavior

We rst demonstrate the performance of our framework in tBesBnmulated envi-
ronment without using the automatic demonstration taslegsaor, and show that
our demonstration capture environment and parameter eeggrocess produce
acceptable object sensitivity values. Using our RRT* pmwe show that the re-
covered sensitivities produce paths that imitate the eéxj@nonstrations.

The test environment, as shown in Figure 2, consists of diero@ble objects
forming the faces of a hollow cube. These objects form thtasses; each pair of
opposing faces has the same sensitivity assigned, witlowest sensitivity(1; L)
shown in blue, an intermediate sensitivitl{ M>) shown in green, and high sen-
sitivity (Hy; H2) shown in yellow. For testing purposes, the “true” sengitivalues
of these objects are sethg L, = 0:2,M;; M, = 0:4,Hq;Hy = 0:8. We use the true
values to evaluate the quality of paths planned with thevexaal sensitivity values,
but they are unknown to our IOC method.

Using the conservative approach discussed in Section 2.2leinonstrations
were performed, one for each pair of adjacent objects. &kezamples of these
demonstrations can be seen in Figure 2 and Figure 5. While-tiomsuming, this
approach ensures that suf cient demonstrations have belatted to capture the
desired behavior. In these demonstrations, lower-seitgitibjects were preferen-
tially deformed instead of higher-sensitivity objects.

Using the set of 12 demonstrations, we recovered the objesits/ity parame-
ters using our parameter recovery process. We generatéadfls® sample paths
around each demonstration using a multivariate gausssritdition using the pro-
cess described in [9], which produces smooth noisy path ksnapound an initial
path. Features for all demonstrations and samples werewtechpy executing paths
in the demonstration capture environment, and all featatees were normalized

12 Calder Phillips-Graf in and Dmitry Berenson

relative to the highest feature value. Using the PIIRL folation of IOC, the opti-
mal weights were recovered using the convex optimizatioblem in Equation (1);
we used the function minimization tools in MATLAB to perfortims optimization.
For optimization, the lower bound of possible weight values 0.1, and the upper
bound was 1000, with the weights initialized to 500. The weced sensitivity val-
ues werel; = 0:10004,L, = 0:10092,M; = 2:8523,M, = 8:5683,H; = 95892,
H, = 99951. Note that both high sensitivity objectd;(andHy) were avoided in
all demonstrations, and thus received maximum weightsdmgitimization. Again,
recovery of the true sensitivities is impossible and we neuatuate our method in
terms of the cost of the path planned using the recoveredtiséies.

5.1.1 Recovered Parameter Veri cation

(@ (b) (© (d)

Fig. 5: Examples of goal con gurations from demonstrations (aym aorresponding goals of
paths planned using recovered sensitivity values (b,d) p&ths are not shown for clarity.

Using the object sensitivity parameters recovered usifBLRwe planned for
all 12 demonstration tasks using RRT*. Table 1 compares éneothstrations with
results for planning times of 30 and 60 minutes, with 30 andritfs of each, re-
spectively. Figure 5 shows examples of demonstrated pattmpared with paths
produced by RRT*. As shown in the table, paths produced usiagecovered pa-
rameters imitate the behavior of the demonstrations byrdefmy the same objects
with similar amounts of deformation except for two demoatstns (namely 9 and
12) for which the planner found a path superior to the origileenonstration. Note
that due to the dif culty of the planning problem and the aiplanning time for
RRT*, we do not expect planned paths to exactly match the dstrations. Two
notable types of error resulted in sub-optimal plans, ngroakes where planned
paths clip the edge of higher-sensitivity objects, and eadeere planned paths sim-
ply result in higher cost than the demonstration. In botlesasrrors are indicated
by high standard deviations; this is expected if a small nemolb the planned paths
exhibit particularly sub-optimal behavior. These errors eaused by the limited
time available to RRT*, which restricts the number of goates sampled and the

Reproducing Expert-Like Motion in Deformable Environment 13

Demonstrateqi Recovered (30 plans, 30 min/plann) Recovered (15 plans, 60 min/plan)
L M H L M H L M H

17561 0.0 0.012.14[4.68] 0.0[0.0] 0.0[0.0]10.81[L.55] 0.0[0.0] 0.0[0.0]
2 |7.14 0.0 0.012.35[2.7] 0.0[0.0] 0.0[0.0]|11.57[2.82] 0.0[0.0] 0.0[0.0]
3 |4.87 0.0 0.010.65[3.71] 0.16[0.82] 0.0[0.0] 9.82[2.84] 0.0[0.0] 0.0[0.0]
4 |5.30 0.0 0.010.27 [2.75] 0.07 [0.38] 0.01[0.0R11.06[2.22] 0.0[0.0] 0.0[0.0]
517.69 0.0 0.013.65[4.18] 0.0[0.0] 0.1[0.53114.17[3.62] 0.0[0.0] 0.0[0.0]
6 |7.92 0.0 0.010.73[2.09] 0.0[0.0] 0.0[0.01]11.24[4.7] 0.0[0.0] 0.0[0.0]
7 |7.27 0.0 0.011.86[2.93] 0.1[0.54] 0.0[0.0] 12.48([3.5] 0.0[0.0] 0.0[0.0]
8 |9.55 0.0 0.013.48[3.52] 0.34[1.47] 0.0[0.0]11.97 [2.97] 0.26[0.97] 0.0[0.0]
9 | 0.0 35.59 0.00.02[0.13] 32.55[9.13] 0.0 [0.01]0.03[0.11] 31.51[10.48] 0.0 [0.0]

10/ 0.0 20.38 0.0 0.9[1.63] 21.8([8.44] 0.0[0.01]1.44[2.69] 20.51[8.5] 0.0[0.0]
11/ 0.0 18.67 0.00.02 [0.08] 23.79 [5.62] 0.29 [1.2DP.17 [0.56] 24.68 [5.55] 0.0 [0.0]
12| 0.0 17.17 0.09.58 [1.95] 0.1[0.32] 0.07 [0.25]9.36 [1.96] 0.02[0.09] 0.03 [0.09]

Table 1:Comparison between demonstrated behavior and paths plasivey object sensitivity
values recovered from 12 demonstrations between each fadtjacent objects. Costs reported
(mean [std.dev.]) are the integral of volume change migiipby the true object sensitivity val-
ues, separated by class of object (L = low-sensitivity,lidaig objectd_; andL,, M = medium-
sensitivity, including objectd; andMy, H = high-sensitivity, including objectd; andHy).

re nement of the path. Results for 60-minute planning tirakewn in Table 1 show
that in most cases, increased planning time reduces thess.éMote that the high
planning times used here are partially a consequence of unttpre test, which
adds considerable computation in addition to the defolnatost function.

5.1.2 Generalization of Recovered Parameters

The importance of recovering sensitivity parameters ismo¢produce the demon-
strations, since these could simply be replayed; rathegvering the sensitivity
parameters allows us to generalize the behavior display#tei demonstrations to
other tasks in the test environment. To demonstrate thatett@vered sensitivity
parameters generalize, we performed a set of tests showgunreFs. Starting from
one of the demonstrations (demonstration task 6), we adjube target point and
inserted rigid obstacles that block the demonstrated patishown in Figure 6, our
planner produces paths that exhibit the same behavior adethenstration path;
while the new path differs from the demonstration and thaslte in different cost,
the preferential deformation of the blue object over theegrene indicates that the
expert's preference was correctly captured.

5.2 Automatic Generation of Demonstration Tasks

Using the same test environment, we tested our active legumiethod for auto-
matically collecting demonstration tasks. Examples oséhdemonstration tasks
are shown in Figure 2. Unlike the conservative approachudisad previously,

14 Calder Phillips-Graf in and Dmitry Berenson

(@ (b) L=8.20, M=0.0, H=0.0 (c) L=21.24, M=0.0, H=0.0
L=7.27,M=0.0,H=0.0

Fig. 6: Paths planned to show the generality of recovered sengiti@iues, (a) goal con guration
of demonstration 6, and (b)(c) two goals of paths planned taitget points offset from the center
of the environment when the direct path from start to targélaocked by a rigid obstacle (black).

which used demonstrations between all pairs of adjacerttdjthe active learning
method generates only enough tasks to form a ranking of gkttdin the environ-
ment. We tested the active learning method in the same tesbament as above
and allowed it to select a subset of tests from the set of cehgursive demonstra-
tions. Using this method, between 8 and 10 demonstrations veguired to cap-
ture features for all objects, compared to the 12 used bydhsezvative approach.
As before, 100 sample paths were generated around each deatmm, and sen-
sitivities were recovered using the PIIRL optimization Ipiem. Since the active
learning process involves some random selections, we ranals 10 demonstra-
tions were required in 14 cases, and 8 demonstrations in€l, eath average re-
covered sensitivities (average [std.dev.]) bdiag 0:10(0:0], L, = 0:101/0:0002,
M = 2:8580:012], M, = 8:630[0:071], H; = 98412[29:272),H, = 9995090:165].
Comparing these results with the sensitivities learnedgutie full set of demon-
strations (see Section 5.1), we observe that the value®amneeaningfully different,
which shows that the active learning method can infer vanilar sensitivity rela-
tionships with fewer demonstrations.

5.3 Physical Environment Tests

In addition to testing with our simulated environment, werdalso applied our
framework to a planar physical test environment shown imfeég with an L-shaped
block, similar to those used in our previous work [16]. Liker grevious work, the
use of a planar 3DoF environment allows for the deformatiarbgects in the envi-
ronment to be tracked in real time by an overhead cameras Rathe environment
were planned using the same RRT* planner as before, albSH(8).
For comparison purposes, we rst planned using uniform isieitg values for

all objects, as shown in Figure 7b. A demonstration pathutjnaa narrower, higher-

Reproducing Expert-Like Motion in Deformable Environment 15

R i
V
;'AV"(RO
g 5
R Sl
it WA REER

(@) (b)

Fig. 7: Testing for our physical test environment (a), with objeutsnbered and start (red) and
goal (blue) states shown. Swept volumes of (b) path planrigduniform object sensitivity values,
(c) demonstration path, and (d) path planned with recoveeeditivity values.
Object deformation
O O, O3 O4 Os
Uniform 0 3367 2442 0 554148
Demonstration23451 0 0 0 35222
Recovered (51569 38798 0 0 73013

Table 2:Deformation comparison for the ve left-hand objects in @lysical test environment
between a path planned with uniform object sensitivity galuhe demonstrated path, and a path
planned using the recovered sensitivity values. Reporéatichation values are in pixels.

deformation passage was provided using our demonstrajuni@ environment, as
shown in Figure 7c. As with the simulated environment, 100las were generated
around the demonstration, and object sensitivity valdes 1:00, O, = 20000,
O3 = 10003, 04 = 20000, Os = 36:21 were recovered using a lower bound of
1, upper bound of 200, and initial value of 100. These pararseire expected, as
the demonstration path deforrdg, O4 and Os, while avoiding the other objects.
Planning using the recovered values is shown in Figure Zarphg was performed
with a planning time of 5 minutes. Following planning, aliél paths were executed
in our test environment by an industrial robot, with objeefatmations tracked
by our tracking camera and reported in Table 2. As before, avaat expect the
planned path to exactly match the demonstration; in pdaticdue to the narrow
low-cost passages in the environment, it is unsurprisiag tthe planned path has
signi cantly higher cost than the expert demonstrationwdwer, the planned path
does avoidOs, instead preferring the passage betw@grand O, which matches
the preferences demonstrated by the expert.

6 Conclusion

We have developed a framework for recovering sensitivitiedeformable objects
so that our motion planners imitate the behavior of expeeraisn deformable
environments. By formulating the problem of motion plarqnin deformable en-
vironments in terms of generating optimal paths that min@meformation, we
can recover object sensitivity parameters from demorestraptimal paths using
IOC. We also propose an active learning algorithm to geratamonstration tasks.
Our framework has two advantages over existing similarriggkes. First, by using

16 Calder Phillips-Graf in and Dmitry Berenson

sampling-based techniques for IOC that avoid the need t@gbk forward prob-
lem and sampling-based asymptotically-optimal planneus,framework is more
applicable to higher-dimensional problems than existipgraaches. Second, our
method for automatically generating demonstration tasksi$ers to perform re-
duces the number of demonstration tasks needed to capwidetired behavior.
We tested our framework in simulated and physical test enwirents, and showed
that it recovers object sensitivities suitable for plagpaths that imitate the behav-
ior of expert demonstrations. We also showed that theseetes can generalize
to new tasks.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inwerginforcement learning. In: ICML
(2004)

2. Alterovitz, R., Goldberg, K.: Motion Planning in Medi@nOptimization and Simulation Al-
gorithms for Image-Guided Procedures (Springer Tractsdwaficed Robotics). Springer
(2008)

3. Chen, L., Rong, Y.: Linear time recognition algorithms fopological invariants in 3D. In:
International Conference on Pattern Recognition (2008)

4. Coumans, E.: Bullet 2.73 Physics SDK Manual (2010)

5. Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparsenhees models of complex deformable
solids. ACM Transactions on Graphics pp. 73-73 (2011)

6. Gibson, S.F.F., Mirtich, B.: A survey of deformable madglin computer graphics. Tech.
rep., Mitsubishi Electric Research Laboratories (1997)

7. Irving, G., Teran, J., Fedkiw, R.: Invertible nite elemts for robust simulation of large defor-
mation. In: ACM SIGGRAPH/Eurographics Symposium on Corepétnimation, SCA '04.
New York, New York, USA (2004)

8. Jiménez, P.: Survey on model-based manipulation phgnoi deformable objects. Robotics
and Computer-Integrated Manufacturig§(2), 154—-163 (2012)

9. Kalakrishnan, M., Chitta, S., Theodorou, E., PastoG&haal, S.: STOMP: Stochastic Trajec-
tory Optimization for Motion Planning. In: ICRA (2011)

10. Kalakrishnan, M., Pastor, P., Righetti, L., Schaal,L8arning Objective Functions for Ma-
nipulation. In: ICRA (2013)

11. Kalman, R.: When is a linear control system optimal? dalunf Basic Engineering (1964)

12. Karaman, S., Frazzoli, E.: Sampling-based AlgorithorsGptimal Motion Planning. The
International Journal of Robotics Resea8f)7), 20 (2010)

13. Maris, B., Botturi, D., Fiorini, P.: Trajectory planmgjrwith task constraints in densely lled
environments. In: IROS (2010)

14. Mdller, M., Dorsey, J., McMillan, L., Jagnow, R., CutlB.: Stable real-time deformations. In:
ACM SIGGRAPH/Eurographics Symposium on Computer Animati®CA '02. New York,
New York, USA (2002)

15. Ng, A.Y., Russell, S.J., et al.: Algorithms for inversénforcement learning. In: ICML (2000)

16. Phillips-Grafin, C., Berenson, D.: A Representatiori Deformable Objects For Motion
Planning With No Physical Simulation. In: ICRA (2014)

17. Ratliff, N., Silver, D., Bagnell, J.A.D.: Learning toaeh: functional gradient techniques for
imitation learning. Autonomous Robots (2009)

18. Sucan, I.A., Moll, M., Kavraki, L.E.: The Open MotionadPIning Library. IEEE Robotics &
Automation Magazind9(4), 72—82 (2012). http://ompl.kavrakilab.org

19. Ziebart, B.D., et al.: Maximum Entropy Inverse Reinfarent Learning. In: AAAI, pp. 1433—
1438 (2008)

