
Reproducing Expert-Like Motion in Deformable
Environments Using Active Learning and IOC

Calder Phillips-Graf�in and Dmitry Berenson

Abstract We propose a method that allows a motion planning algorithm to imitate
the behavior of expert users in deformable environments. For instance, a surgeon
inserting a probe knows intuitively which organs are more sensitive than others, but
may not be able to mathematically represent a cost function that governs his or her
motion. We hypothesize that the relativesensitivitiesof deformable objects are en-
coded in the expert's demonstrated motion and present a framework which is able
to imitate an expert's behavior by learning a sensitivity-based cost function under
which the expert's motion is optimal. Our framework consists of three stages: (1)
Automatically generating demonstration tasks that promptthe user to provide in-
formative demonstrations through an active learning process; (2) Recovering object
sensitivity values using an Inverse Optimal Control technique; and (3) Reproduc-
ing the demonstrated behavior using an optimal motion planner. We have tested our
framework with a set of 5DoF simulated and 3DoF physical testenvironments, and
demonstrate that it recovers object parameters suitable for planning paths that imi-
tate the behavior of expert demonstrations. Additionally,we show that our method
is able to generalize to new tasks; e.g. when a new obstacle isintroduced into the
environment.

1 Introduction

Manipulation of deformable objects, and in deformable environments, is an impor-
tant area of research, as deformable objects are common in domestic, industrial, and
medical environments. Unlike manipulation in rigid environments, where collisions
are forbidden, deformable environments allow, and often require, collisions between
a robot and deformable objects. However, modeling deformable objects is a dif�cult
problem; models must not only capture the geometry (undeformed and deformed)
of objects (itself a very dif�cult problem), but should alsocapture the sensitivity
of the object. This qualitative aspect is critical for deformable environments, as it
allows a motion planner to distinguish between multiple objects with similar phys-
ical properties but with different qualitative characteristics. An important example
of this occurs in surgical robotics; while multiple organs and tissues may have sim-

Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 USA
e-mail: cnphillipsgraf�@wpi.edu, dberenson@cs.wpi.edu. +This work is supported in part by the
Of�ce of Naval Research under Grant N00014-13-1-0735 and bythe National Science Foundation
under Grant IIS-1317462.

1

2 Calder Phillips-Graf�in and Dmitry Berenson

Fig. 1:Diagram of the three stages and main components of our framework.

ilar physical properties, some parts of the body are signi�cantly more sensitive than
others. Without accounting for sensitivity, motion planners can produce paths that
could cause unnecessary injury.

The motion planning methods introduced in our previous work[16] use a voxel-
based representation of deformable objects, in which each voxel has two parameters.
The �rst parameter,deformability, captures physical properties of the rigidity of the
material. The second parameter,sensitivity, captures the qualitative signi�cance of
deforming the object. Together, these parameters are used in a cost function that
provides a cost of deformation that can be used in cost-awaremotion planners.

While the deformability parameters are directly related tomaterial properties,
setting the sensitivity parameters is more dif�cult, as they capture a range of ob-
ject characteristics. Setting them by hand is time-consuming and error-prone, as
incorrect sensitivity values can produce unwanted plannerbehavior. More problem-
atically, setting these parameters for practical environments requires both domain
knowledge and the ability to mathematically represent thatknowledge such that
the planner will perform well. Instead, we propose a framework for automatically
learning and validating these parameters from expert demonstrations. For example,
a surgeon can demonstrate the optimal path for inserting a probe, and we can use
this demonstration to �nd the sensitivity values of organs around the path.

Our framework consists of three parts: (1) Automatic generation of demonstra-
tion tasks that prompt the user to provide informative demonstrations through a
novel active learning process; (2) Recovery of object sensitivity values usingPath
Integral Inverse Reinforcement Learning(PIIRL) Inverse Optimal Control (IOC)
technique [10]; and (3) Reproduction of the demonstrated behavior using the RRT*
asymptotically-optimal motion planner [12] with a key modi�cation that allows us
to check for punctures of deformable objects.

This approach offers two main advantages over existing similar techniques. First,
by using sampling-based techniques for IOC that avoid the need to solve the forward
problem and sampling-based asymptotically-optimal planners, our framework is ap-
plicable to higher-dimensional problems than approaches such as LEARCH [17],
which are limited by the need to repeatedly compute optimal paths to recover the
cost function. Second, our proposed method for automatically generating demon-
stration tasks for experts to perform reduces the number of demonstration tasks
needed to capture the desired behavior and removes the need for domain knowledge

Reproducing Expert-Like Motion in Deformable Environments 3

to generate these tasks by hand. Finally, to our knowledge, IOC has never before
been applied to the problem of learning deformable object parameters.

In our experiments in simulated and physical test environments we show that,
despite the limitations inherent in asymptotically-optimal sampling-based planning,
the recovered sensitivity parameters allow motion planners to reliably reproduce
behavior demonstrated by expert users. We also present experiments which show
the generalization capabilities of our method.

2 Related Work

Extensive work on the modeling and representation of deformable objects has been
done, primarily from the perspectives of computer graphics[6] and medicine [2]. In
recent years, this work has been adopted by the robotics �eldto enable the manipula-
tion of real-world deformable objects such as clothing, rope, food, and human tissue
[8]. A wide range of simulation-based models for deformableobjects are available,
most of which are meshed models based on Mass-Spring (M-S) [6] and Finite-
Element (FEM) [14, 7], but mesh-less models [13, 5, 16] have also been proposed.
Our model replaces the need for physical simulation with a cost function based on
the volume of intersection between voxelized deformable and rigid objects [16].
While this approach cannot capture moving objects, and can only approximate the
true deformation, it is extremely ef�cient to compute in comparison to simulation-
based methods, and thus ideal for use inside a motion planner. Notably, because
our approach provides a cost function that accounts for bothobject deformation and
sensitivity, it produces plans that minimize deformation and preferentially deform
or avoid objects based on their sensitivity.

Inverse Optimal Control (IOC) is the problem of recovering the cost or reward
function being optimized by a trajectory or policy. Introduced by Kalman [11] and
applied to robotics by Ng et al. [15], several different formulations of the IOC prob-
lem and algorithms to address it have been proposed, covering both continuous and
discrete state spaces [15]. Earlier approaches to the IOC problem, such as appren-
ticeship learning, require that the forward problem be solved in addition to com-
puting optimal weights [1, 17]. More recent approaches, based on the maximum
entropy principle, replace the need for solving the forwardproblem by using sam-
ple trajectories around the demonstration [19].

The IOC approach we use,Path Integral Inverse Reinforcement Learning(PI-
IRL) samples around the demonstration instead of solving the forward problem [10].
In the PIIRL formulation, a series of locally-optimal demonstration trajectories are
gathered from the user(s). For each of these demonstrations, a set of sample trajec-
tories around the demonstration is generated; note that these samples are assumed to
be sub-optimal relative to their demonstration. For all demonstrations and all sam-
ples, user-speci�ed features are evaluated, and the weights associated with these
features are then recovered via a convex optimization problem that attempts to max-

4 Calder Phillips-Graf�in and Dmitry Berenson

imize the margin between the features of the demonstrationsand the features of the
samples.

3 Problem Statement

Let t represent the path of a rigid object (i.e. the robot) throughan environment
composed ofndeformable objectsE = O1;O2; :::;On. Representingt with a discrete
sequence of con�gurations, we assume the cost of executingt is a function of the
formC(t) = å

jt j
k= 1å n

i= 1DiSiVi(t k), whereVi(t k) is the volume of deformation ofOi
that results from placing the rigid object at thekth con�guration of patht , Di is
the deformability ofOi , andSi is the sensitivity ofOi . We focus on learning theSi
parameters, so we assumeDi = 18i, though our methods work with any knownD.
Note that while sensitivity parametersScan be set per-voxel in our representation,
we simplify the problem of recovering sensitivities by assuming that each object has
uniform sensitivity.

S represents the ground-truth sensitivities of the objects.We seek to generate a
set of learned parametersŜ from a set of demonstrations, such that theseŜ can be
used in a motion planner to produce similar behavior to the demonstrations. Obtain-
ing the trueSfrom demonstration is not possible in general, as a demonstration can,
at best, encode only the ratios between different elements of S and not their mag-
nitudes. Thus it is not meaningful to compareS to Ŝ directly. A more informative
comparison is in how well a planner imitates demonstrated behavior when planning
with Ŝ. Thus we evaluate our method in terms of the cost of the path produced by
our framework. Therefore the quality ofŜ relative to the ground truth is evaluated
asE(Ŝ;S) = CS(t d) � CS(t planned(Ŝ)) , wheret d is a path demonstrated for a given
task,t planned(Ŝ) is a path planned for the same task using the sensitivitiesŜ, and the
cost functionCS(�) is evaluated using the ground-truth sensitivitiesS.

4 Methods

We have developed a framework for recovering sensitivity parameters for de-
formable objects, as illustrated in Figure 1. Below we describe each of the four
components in detail.

4.1 Capturing Demonstrations
Like all IOC problems, our approach requires demonstrations. In our case, demon-
strations are captured in a simulation environment using a physics simulator to sim-
ulate deformable objects. Our demonstration task consistsof inserting a cylindrical
probe between deformable objects to reach target points distributed across the en-
vironment, as illustrated in Figure 2. The user attempts to minimize contact with
more sensitive objects (shown in yellow and green) comparedto less sensitive ob-
jects (shown in blue). We record the demonstration trajectory along with the features

Reproducing Expert-Like Motion in Deformable Environments 5

(a) (b) (c) (d)

Fig. 2: Example demonstration tasks for our 6-object test environment, shown with the probe
reaching the target. (a) Low sensitivity objectsL1;L2 (blue), medium sensitivity objectsM1;M2
(green), and high sensitivity objectsH1;H2 (yellow). (b,c,d) Goal con�gurations for three auto-
matically generated tasks.

of that trajectory, which are the total amounts of deformation of each object. While
outwardly simple, the problem of probe and needle insertionbetween deformable
objects such as this is common in medical tasks [2] and a subject of previous re-
search in robot motion [2, 13], however, none of this work hasexplored learning
qualitative properties of deformable objects to determinehigher-level behavior. In
addition to capturing demonstrations, we use this simulation environment to com-
pute feature vectors for demonstration and sample paths.

Each demonstration we capture can be parametrized as ademonstration taskby
a starting pose of the probePstart, a target pointPtarget the user must touch with the
probe tip, and a set of “collision planes”Cplanes, hyperplanes that constrain the
motion of the probe. As shown in Figure 3, the hyperplanes approximate a funnel
that guides the user towards the target point and restricts which objects the user can
contact with the probe. These hyperplanes are added to constrain the user to pro-
ducing demonstrations that capture the relative difference in sensitivity between the
accessible objects. In our experience, without the hyperplanes users sometimes pro-
duce demonstrations that deform only the globally least-sensitive object(s) instead
of capturing sensitivity relationships between neighboring objects.

While we attempt to capture optimal demonstrations, in practice users may pro-
vide slightly sub-optimal demonstrations. We attempt to correct for this using a local
optimizer that optimizes each demonstration. This method generates a set of random
sample trajectories around the demonstration trajectory and replaces the demonstra-
tion trajectory with any of the random samples with strictlydominating deformation
(i.e. the random sample deforms all objects less than or equal to the demonstration).

4.2 Active Learning

We can capture demonstrations and compute features for demonstrations and sam-
ples needed for PIIRL; however, this leaves two problems to address: how to gen-
erate demonstration tasks for the user to complete, and how many demonstrations
must be collected. Clearly, the accuracy of recovered sensitivity values depends on
the quality of the demonstrations provided. For example, ifan object has zero fea-

6 Calder Phillips-Graf�in and Dmitry Berenson

Algorithm 1 Demonstration task collection algorithm
procedure COLLECTDEMONSTRATIONS(A)

G f /0; /0g
O1 argmaxo2E degree(A(o))
O2 argmaxo2neighbors(A(O1)) degree(A(o))
G G[COLLECTSINGLEDEMONSTRATION(O1;O2)
while f o 2 Ejo =2 Gv;degree(A(o)) > 0g 6= /0 do

O1 argmaxf o2Gv jneighbors(A(o))nGv6= /0g depth(G(o))
O2 argmaxf o2neighbors(A(O1))nGvg degree(A(o))
G G[COLLECTSINGLEDEMONSTRATION(O1;O2)
G ENSURERANKING(G)

return G
procedure ENSURERANKING (G)

for O1 2 Gv do
for f O2 2 Gvj depth(G(O2)) � depth(G(O1))g do

if NODIRECTEDPATHEXISTS(O1;O2) then
if DIRECTLYCOMPARABLE(O1;O2) then

G G[COLLECTSINGLEDEMONSTRATION(O1;O2)
return ENSURERANKING(G)

return G
procedure COLLECTSINGLEDEMONSTRATION(O1;O2)

Ptarget;Pedge;Cplanes GENERATEDEMONSTRATIONTASK(O1;O2;Tclearance;Trange)
Dv;De GETDEMONSTRATIONFROMUSER(Ptarget;Pedge;Cplanes)
return (Dv;De)

ture values in both demonstrations and the trajectory samples around the demon-
strations used by PIIRL, we cannot recover a meaningful sensitivity value for the
object; e.g. if all demonstrations entered through the forward half of our cube en-
vironment, no features would be available for objects on thereverse. A different,
but equally problematic, issue occurs when features have been collected for every
object, but the demonstrations are “unconnected”; for example, in an environment
E = f O1;O2;O3;O4g, if features have been collected for demonstrations between
O1;O2 andO3;O4, but not forO2;O3, the optimizer cannot determine ifO1 andO2
are more or less sensitive thatO3 andO4. Thus, we need to ensure that suf�cient
demonstrations have been collected.

The conservative solution is to require a demonstration forevery pair of adja-
cent objects, however, this can result in a large number of demonstrations. For our
test environment shown in Figure 2, 12 demonstrations wouldbe required to cap-
ture the relationship between every adjacent pair. We seek to reduce the number of
demonstrations required.

Simply collecting demonstrations such that we observe a non-zero feature for
each object is insuf�cient for accurate parameter recovery, rather, we must ensure
that the demonstrations collected form aranking of the objects in terms of sen-
sitivity; i.e. that for objectsO1;O2 2 E, rank(O1) is either less than, equal to, or
greater thanrank(O2) if the objects are comparable. Rankings are derived from
demonstrations collected between adjacent objects; the preferentially-deformed ob-
ject receives a lower ranking than the preferentially-avoided object. Rankings are

Reproducing Expert-Like Motion in Deformable Environments 7

Algorithm 2 Demonstration task generation algorithm
procedure GENERATEDEMONSTRATIONTASK(O1;O2;Tclearance;Trange)

Pedge GETEDGEPOINTBETWEENOBJECTS(O1;O2)
Ptarget /0
while Ptarget = /0 do

Psampled SAMPLEINRANGE(Pedge;Trange)
if clearance(Psampled) < Tclearancethen

Ptarget Psampled

Cplanes GENERATECOLLISIONPLANES(Pedge;Ptarget)
return Ptarget;Pedge;Cplanes

not comparable in certain cases, such as between objects on the opposing faces of
our test environment, in which it impossible to perform a demonstration between the
two objects, and they cannot be ranked via a combination of other demonstrations.

Demonstrations are collected using Algorithm 1, which takesA, the set of object
adjacencies inE, and iteratively collects demonstrations until there are no more
useful demonstrations to perform. This algorithm capturespreference relationships
between objects by building a directed graphG. The nodes inG represent objects
in the environment and the directed edges point from the less-sensitive object to the
more-sensitive one. Initially,G contains no nodes or edges, and each demonstration
adds an edge and 0, 1, or 2 nodes. The key to the algorithm is determining which
demonstration (and thus which edge) should be queried next.

The algorithm uses the structure ofG at the current time as well as a heuristic to
decide which demonstration to query next. If the ranking between all objects inG
is known, then the algorithm selects a new object to add toG (via a demonstration
involving that object and one already inG). After adding a new object, the algo-
rithm queries demonstrations until the ranking of all objects in the graph is again
established (this is done in the ENSURERANKING function). It then selects a new
object to add, and so on, until no more objects can be added.

At each step where objects or edges are selected, we choose the object or edge
based on connectivity heuristics. For new objects (i.e. those not already inG), we
prefer those that are adjacent to as many other objects as possible. When picking
objects already in G for a new edge, we prefer objects that have a higher “depth”.
Here depth(n) is the length of the longest directed path inG which ends atn. These
heuristics bias the algorithm to create long chains of edgeswhere possible, which is
clearly bene�cial for forming a ranked list; e.g.rank(O1) < rank(O2) < rank(O3) <
rank(O4) is a chain of three edges which gives a complete ranking of four objects.

Algorithm 1 is not guaranteed to produce the minimal set of demonstrations be-
cause it cannot foresee the results of future demonstrations. It frequently collects
demonstrations early on that prove to be unnecessary in the �nal set of demonstra-
tions. In pathological environments, Algorithm 1 may be forced to collect all pos-
sible demonstrations. However, in practice, we show that itreduces the number of
demonstrations without signi�cant impact on the recoveredsensitivity parameters.

8 Calder Phillips-Graf�in and Dmitry Berenson

Fig. 3: Our automatic
demonstration task gen-
erator.

For each demonstration requested by Algorithm 1, we
generate a new task using Algorithm 2. This algorithm is
given a pair of target objectsO1;O2, a target clearance
Tclearance, and a target depth rangeTrange. First, the algorithm
selects an “edge point”,Pedgeby randomly selecting a point
on the medial axis between the two target objects. Using the
edge point, the algorithm randomly samples nearby points
Trangeaway from the edge point to select one that is “inside”
1 the environment and also at leastTclearanceaway from an
object, which it returns asPtarget, the target point. Finally, a set of “collision planes”
are generated to restrict the user's demonstration to the desired area. The parameter
Trange ensures that the user must insert the probe suf�ciently to cause deformations.
Similarly, the parameterTclearancecontrols how close to an object the target point
can be, and can be used to ensure that the target point itself is not in contact with an
object (see Figure 3).

4.3 Parameter Recovery

Our approach to motion planning for deformable objects, introduced in [16], uses a
“cost of deformation” to enable any motion planner that accounts for cost to produce
plans that minimize deformation. We can frame the problem ofimitating demonstra-
tion behavior as the problem of inferring the sensitivity parameters used to produce
the demonstration. Assuming that the demonstration is optimal, this is the well-
established problem of Inverse Optimal Control (IOC).

Using the PIIRL formulation of IOC, the cost function consists of a series of
featuresV = V1;V2; :::;Vn (in our case these are the amounts of deformation of each
of the n objects) with corresponding sensitivitiesS = S1;S2; :::;Sn, such that the
total cost of a con�gurationC = å n

i= 1ViSi , where theVi can be computed using our
physics simulator, but the optimal set of sensitivitiesS� is unknown.

To �nd the best estimate of the optimal set of sensitivitiesŜ, PIIRL requires a
set of sample paths around each demonstration. Because the demonstrations are as-
sumed to be locally optimal, all samples around a demonstration will be sub-optimal
w.r.t to the unknown cost function. ForK demonstrations andL samples for each
demonstration, the optimal weights are obtained using the following minimization
problem (a similar form of the minimization problem used in [10]), whereVk are
the feature values for demonstrationk, andVk;l are the feature values for samplel of

1 To determine which points are “inside” the environment, we compute a “local maxima map”
using the Signed Distance Field (SDF) of the environment. For each point in the SDF, we follow
the gradient away from obstacles and record the location thegradient becomes zero (i.e. the local
distance maxima). Points “inside” the environment have corresponding local maxima inside the
bounds of the SDF, while points “outside” have local maxima corresponding to the bounds of the
SDF. Intuitively, “inside” points have �nite-distance local maxima reachable via the gradient, while
for “outside” points, the local maxima are unde�ned.

Reproducing Expert-Like Motion in Deformable Environments 9

demonstrationk:

Ŝ= argminS

K

å
k= 1

STVk
L
å

l= 1
STVk;l

(1)

This minimization �nds the sensitivity valueŝSthat maximize the margin between
the cost of the demonstrations and the costs of their samples. Note that in our prob-
lem, S > 0 and sample feature valuesVk;l 6= 0, as all sensitivity values must be
greater than zero andVk;l = 0 impliesVk = 0 (since samples must be sub-optimal
relative to their demonstrations).Vk = 0 implies that the demonstrationk captures
no information about any object and thus can be removed from the optimization so
this condition will not occur. Since this minimization problem is convex, we can
use standard convex optimization solvers to �nd optimal weights. Unlike previous
work such as LEARCH [17], PIIRL does not rely on the speci�c con�gurations the
demonstration path traverses; rather, only the corresponding feature values must be
locally optimal in our cost function [9]. This makes it tractable to learn cost func-
tions in high-dimensional spaces.

4.4 Recovered Parameter Veri�cation

Once sensitivity valueŝS have been recovered for each object in our test envi-
ronments, we must verify that the recovered values allow ourmotion planner to
imitate the behavior of the expert demonstrations. We attempt to perform each
demonstration task using an optimal motion planner and comparing the planned
patht planned(Ŝ) with the demonstrationt d in terms of the true cost functionCS(�)
using the ground truth sensitivity valuesS. In our previous work, we used the T-
RRT and GradienT-RRT planners to ef�ciently produce paths in high-dimensional
spaces [16]; however, since these planners have no optimality guarantees, they are
unsuitable for parameter veri�cation. Instead, we use the asymptotically-optimal
RRT* planner [12] with our deformation cost function. Whilewe could use de-
formations measured via a physics simulator to compute costduring planning, our
voxel-based deformation cost function is signi�cantly faster, more stable, and de-
tects object punctures and separation. To accurately mimicthe demonstration tasks,
the RRT* planner is provided with the same task-space targetpoint to reach with
the probe tip, rather than a goal con�guration of the probe. Feasible con�gurations
touching this target point can be sampled, and RRT* attemptsto connect the tree
to these goal states. As RRT* runs, it improves the path by reducing the deforma-
tion cost of the path and by sampling and connecting to new, lower-cost goal states.
Note that while RRT* isasymptoticallyoptimal, for �nite time it will not return
the optimalpath, so we expect paths reproduced with RRT* may be slightlyhigher-
cost than their corresponding expert demonstrations, but should exhibit the same
preferential deformation demonstrated by the expert.

10 Calder Phillips-Graf�in and Dmitry Berenson

Fig. 4: Illustration of puncture checking for an extension from con�guration q1 to q3. As the
surfaces are no longer connected (red), puncture has occurred and theq2 ! q3 motion is invalid.

In addition to integrating our existing cost function with RRT*, we have signi�-
cantly improved the quality of planned paths by adding puncture detection to prevent
paths from puncturing or cutting deformable objects. Puncture and cut detection is
essential to planner performance; without it, planners canproduce low-cost paths
that pass directly though deformable objects. To prevent punctures and cuts, we
check every extension of the tree in RRT* for puncture using an incremental variant
of the algorithm introduced by Chen et. al. [3] for computingtopological invariants
on voxel grids. The original algorithm extracts the surfacevertices from the voxel
grid, and computes the connectivity of each surface vertex.Each surface vertex can
be connected to between one and six neighboring surface vertices; letM1 be the
total number of surface vertices with one connected neighbor, M2 the total with two
neighbors, and so on. From these totals, Chen et. al. prove that the number of holes
in the voxel grid isnholes= 1+ ((M5+ (2� M6) � M3)=8).

Thus, checking for punctures can be implemented by removingthe swept vol-
ume of the path of the probe from the voxel-based model of deformable objects
used for motion planning, and then computing the number of holes to ensure that
no new holes have been created by the path. Additionally, to prevent objects from
being completely cut apart by the path, the overall connectivity of the surface voxels
corresponding to each object are computed; if the surface vertices for an object form
multiple disconnected groups, then the object has been cut apart by the path.

To ef�ciently perform these checks during the planning process, we incremen-
tally check for punctures with each extension and rewiring step of RRT* (see Figure
4). For testing a new edge from con�gurationq1 to con�gurationq2 the process is
as follows: (1) retrieve the stored object surfaces corresponding toq1, (2) update
the object surfaces with the swept volume fromq1 to q2, (3) compute the number
of holes in each object surface (check for puncture), (4) compute the connectivity
of each object surface (check for cuts), and (5) if no holes orcuts are encountered,
store the updated surfaces corresponding toq2. For every such check, we are effec-
tively checking the entire path from the start con�gurationqstart to q2 for punctures
and cuts.

Reproducing Expert-Like Motion in Deformable Environments 11

5 Results

We present results of testing our framework in a 3D simulatedenvironment (5DoF
probe insertion task) and in a physical planar environment (3DoF rigid object nav-
igation task) using an industrial robot. We use the Bullet physics simulator [4] to
provide an environment for capturing demonstrations and computing features, and
the Open Motion Planning Library (OMPL) [18] to provide the RRT* planner used
to verify the recovered sensitivity values. We show that ourmethods accurately re-
cover sensitivity values that allow planners to imitate expert demonstrations. We
also report on how the algorithm generalizes to a new task, where an obstacle is in-
troduced into the environment, and report on the use of active learning for reducing
the number of demonstrations required. Ideally, we would compare the performance
of our framework with existing approaches such as LEARCH [17], however, these
approaches require computing the true optimal path to perform IOC, which is in-
tractable in the 5DoF probe insertion task.

5.1 Recovered Behavior

We �rst demonstrate the performance of our framework in the 3D simulated envi-
ronment without using the automatic demonstration task generator, and show that
our demonstration capture environment and parameter recovery process produce
acceptable object sensitivity values. Using our RRT* planner, we show that the re-
covered sensitivities produce paths that imitate the expert demonstrations.

The test environment, as shown in Figure 2, consists of six deformable objects
forming the faces of a hollow cube. These objects form three classes; each pair of
opposing faces has the same sensitivity assigned, with the lowest sensitivity (L1;L2)
shown in blue, an intermediate sensitivity (M1;M2) shown in green, and high sen-
sitivity (H1;H2) shown in yellow. For testing purposes, the “true” sensitivity values
of these objects are set asL1;L2 = 0:2, M1;M2 = 0:4, H1;H2 = 0:8. We use the true
values to evaluate the quality of paths planned with the recovered sensitivity values,
but they are unknown to our IOC method.

Using the conservative approach discussed in Section 4.2, 12 demonstrations
were performed, one for each pair of adjacent objects. Several examples of these
demonstrations can be seen in Figure 2 and Figure 5. While time-consuming, this
approach ensures that suf�cient demonstrations have been collected to capture the
desired behavior. In these demonstrations, lower-sensitivity objects were preferen-
tially deformed instead of higher-sensitivity objects.

Using the set of 12 demonstrations, we recovered the object sensitivity parame-
ters using our parameter recovery process. We generated a set of 100 sample paths
around each demonstration using a multivariate gaussian distribution using the pro-
cess described in [9], which produces smooth noisy path samples around an initial
path. Features for all demonstrations and samples were computed by executing paths
in the demonstration capture environment, and all feature values were normalized

12 Calder Phillips-Graf�in and Dmitry Berenson

relative to the highest feature value. Using the PIIRL formulation of IOC, the opti-
mal weights were recovered using the convex optimization problem in Equation (1);
we used the function minimization tools in MATLAB to performthis optimization.
For optimization, the lower bound of possible weight valueswas 0.1, and the upper
bound was 1000, with the weights initialized to 500. The recovered sensitivity val-
ues wereL1 = 0:10004,L2 = 0:10092,M1 = 2:8523,M2 = 8:5683,H1 = 958:92,
H2 = 999:51. Note that both high sensitivity objects (H1 andH2) were avoided in
all demonstrations, and thus received maximum weights in the optimization. Again,
recovery of the true sensitivities is impossible and we mustevaluate our method in
terms of the cost of the path planned using the recovered sensitivities.

5.1.1 Recovered Parameter Veri�cation

(a) (b) (c) (d)

Fig. 5: Examples of goal con�gurations from demonstrations (a,c) and corresponding goals of
paths planned using recovered sensitivity values (b,d). Full paths are not shown for clarity.

Using the object sensitivity parameters recovered using PIIRL, we planned for
all 12 demonstration tasks using RRT*. Table 1 compares the demonstrations with
results for planning times of 30 and 60 minutes, with 30 and 15trials of each, re-
spectively. Figure 5 shows examples of demonstrated paths compared with paths
produced by RRT*. As shown in the table, paths produced usingthe recovered pa-
rameters imitate the behavior of the demonstrations by deforming the same objects
with similar amounts of deformation except for two demonstrations (namely 9 and
12) for which the planner found a path superior to the original demonstration. Note
that due to the dif�culty of the planning problem and the �nite planning time for
RRT*, we do not expect planned paths to exactly match the demonstrations. Two
notable types of error resulted in sub-optimal plans, namely cases where planned
paths clip the edge of higher-sensitivity objects, and cases where planned paths sim-
ply result in higher cost than the demonstration. In both cases, errors are indicated
by high standard deviations; this is expected if a small number of the planned paths
exhibit particularly sub-optimal behavior. These errors are caused by the limited
time available to RRT*, which restricts the number of goal states sampled and the

Reproducing Expert-Like Motion in Deformable Environments 13

Demonstrated Recovered (30 plans, 30 min/plan) Recovered (15 plans, 60 min/plan)
L M H L M H L M H

1 5.61 0.0 0.012.14 [4.68] 0.0 [0.0] 0.0 [0.0] 10.81 [1.55] 0.0 [0.0] 0.0 [0.0]
2 7.14 0.0 0.0 12.35 [2.7] 0.0 [0.0] 0.0 [0.0] 11.57 [2.82] 0.0 [0.0] 0.0 [0.0]
3 4.87 0.0 0.010.65 [3.71] 0.16 [0.82] 0.0 [0.0] 9.82 [2.84] 0.0 [0.0] 0.0 [0.0]
4 5.30 0.0 0.010.27 [2.75] 0.07 [0.38] 0.01 [0.03]11.06 [2.22] 0.0 [0.0] 0.0 [0.0]
5 7.69 0.0 0.013.65 [4.18] 0.0 [0.0] 0.1 [0.53]14.17 [3.62] 0.0 [0.0] 0.0 [0.0]
6 7.92 0.0 0.010.73 [2.09] 0.0 [0.0] 0.0 [0.01] 11.24 [4.7] 0.0 [0.0] 0.0 [0.0]
7 7.27 0.0 0.011.86 [2.93] 0.1 [0.54] 0.0 [0.0] 12.48 [3.5] 0.0 [0.0] 0.0 [0.0]
8 9.55 0.0 0.013.48 [3.52] 0.34 [1.47] 0.0 [0.0]11.97 [2.97] 0.26 [0.97] 0.0 [0.0]
9 0.0 35.59 0.00.02 [0.13] 32.55 [9.13] 0.0 [0.01]0.03 [0.11] 31.51 [10.48] 0.0 [0.0]
10 0.0 20.38 0.0 0.9 [1.63] 21.8 [8.44] 0.0 [0.01] 1.44 [2.69] 20.51 [8.5] 0.0 [0.0]
11 0.0 18.67 0.00.02 [0.08] 23.79 [5.62] 0.29 [1.29]0.17 [0.56] 24.68 [5.55] 0.0 [0.0]
12 0.0 17.17 0.09.58 [1.95] 0.1 [0.32] 0.07 [0.25]9.36 [1.96] 0.02 [0.09] 0.03 [0.09]

Table 1:Comparison between demonstrated behavior and paths planned using object sensitivity
values recovered from 12 demonstrations between each pair of adjacent objects. Costs reported
(mean [std.dev.]) are the integral of volume change multiplied by the true object sensitivity val-
ues, separated by class of object (L = low-sensitivity, including objectsL1 andL2, M = medium-
sensitivity, including objectsM1 andM2, H = high-sensitivity, including objectsH1 andH2).

re�nement of the path. Results for 60-minute planning timesshown in Table 1 show
that in most cases, increased planning time reduces these errors. Note that the high
planning times used here are partially a consequence of our puncture test, which
adds considerable computation in addition to the deformation cost function.

5.1.2 Generalization of Recovered Parameters

The importance of recovering sensitivity parameters is notto reproduce the demon-
strations, since these could simply be replayed; rather, recovering the sensitivity
parameters allows us to generalize the behavior displayed in the demonstrations to
other tasks in the test environment. To demonstrate that therecovered sensitivity
parameters generalize, we performed a set of tests shown in Figure 6. Starting from
one of the demonstrations (demonstration task 6), we adjusted the target point and
inserted rigid obstacles that block the demonstrated path.As shown in Figure 6, our
planner produces paths that exhibit the same behavior as thedemonstration path;
while the new path differs from the demonstration and thus results in different cost,
the preferential deformation of the blue object over the green one indicates that the
expert's preference was correctly captured.

5.2 Automatic Generation of Demonstration Tasks

Using the same test environment, we tested our active learning method for auto-
matically collecting demonstration tasks. Examples of these demonstration tasks
are shown in Figure 2. Unlike the conservative approach discussed previously,

14 Calder Phillips-Graf�in and Dmitry Berenson

(a)
L=7.27,M=0.0,H=0.0

(b) L=8.20, M=0.0, H=0.0 (c) L=21.24, M=0.0, H=0.0

Fig. 6:Paths planned to show the generality of recovered sensitivity values, (a) goal con�guration
of demonstration 6, and (b)(c) two goals of paths planned with target points offset from the center
of the environment when the direct path from start to target is blocked by a rigid obstacle (black).

which used demonstrations between all pairs of adjacent objects, the active learning
method generates only enough tasks to form a ranking of all objects in the environ-
ment. We tested the active learning method in the same test environment as above
and allowed it to select a subset of tests from the set of comprehensive demonstra-
tions. Using this method, between 8 and 10 demonstrations were required to cap-
ture features for all objects, compared to the 12 used by the conservative approach.
As before, 100 sample paths were generated around each demonstration, and sen-
sitivities were recovered using the PIIRL optimization problem. Since the active
learning process involves some random selections, we ran 15trials; 10 demonstra-
tions were required in 14 cases, and 8 demonstrations in 1 case, with average re-
covered sensitivities (average [std.dev.]) beingL1 = 0:100[0:0], L2 = 0:101[0:0002],
M1 = 2:858[0:012],M2 = 8:630[0:071],H1 = 984:12[29:272],H2 = 999:509[0:165].
Comparing these results with the sensitivities learned using the full set of demon-
strations (see Section 5.1), we observe that the values are not meaningfully different,
which shows that the active learning method can infer very similar sensitivity rela-
tionships with fewer demonstrations.

5.3 Physical Environment Tests

In addition to testing with our simulated environment, we have also applied our
framework to a planar physical test environment shown in Figure 7 with an L-shaped
block, similar to those used in our previous work [16]. Like our previous work, the
use of a planar 3DoF environment allows for the deformation of objects in the envi-
ronment to be tracked in real time by an overhead camera. Paths in the environment
were planned using the same RRT* planner as before, albeit inSE(2).

For comparison purposes, we �rst planned using uniform sensitivity values for
all objects, as shown in Figure 7b. A demonstration path through a narrower, higher-

Reproducing Expert-Like Motion in Deformable Environments 15

(a) (b) (c) (d)

Fig. 7: Testing for our physical test environment (a), with objectsnumbered and start (red) and
goal (blue) states shown. Swept volumes of (b) path planned with uniform object sensitivity values,
(c) demonstration path, and (d) path planned with recoveredsensitivity values.

Object deformation
O1 O2 O3 O4 O5

Uniform 0 3367 2442 0 554148
Demonstration23451 0 0 0 35222
Recovered 51569 38798 0 0 73013

Table 2:Deformation comparison for the �ve left-hand objects in ourphysical test environment
between a path planned with uniform object sensitivity values, the demonstrated path, and a path
planned using the recovered sensitivity values. Reported deformation values are in pixels.

deformation passage was provided using our demonstration capture environment, as
shown in Figure 7c. As with the simulated environment, 100 samples were generated
around the demonstration, and object sensitivity valuesO1 = 1:00, O2 = 200:00,
O3 = 100:03 , O4 = 200:00, O5 = 36:21 were recovered using a lower bound of
1, upper bound of 200, and initial value of 100. These parameters are expected, as
the demonstration path deformsO1, O4 andO5, while avoiding the other objects.
Planning using the recovered values is shown in Figure 7d; planning was performed
with a planning time of 5 minutes. Following planning, all three paths were executed
in our test environment by an industrial robot, with object deformations tracked
by our tracking camera and reported in Table 2. As before, we do not expect the
planned path to exactly match the demonstration; in particular due to the narrow
low-cost passages in the environment, it is unsurprising that the planned path has
signi�cantly higher cost than the expert demonstration. However, the planned path
does avoidO3, instead preferring the passage betweenO1 andO2, which matches
the preferences demonstrated by the expert.

6 Conclusion

We have developed a framework for recovering sensitivitiesof deformable objects
so that our motion planners imitate the behavior of expert users in deformable
environments. By formulating the problem of motion planning in deformable en-
vironments in terms of generating optimal paths that minimize deformation, we
can recover object sensitivity parameters from demonstrated optimal paths using
IOC. We also propose an active learning algorithm to generate demonstration tasks.
Our framework has two advantages over existing similar techniques. First, by using

16 Calder Phillips-Graf�in and Dmitry Berenson

sampling-based techniques for IOC that avoid the need to solve the forward prob-
lem and sampling-based asymptotically-optimal planners,our framework is more
applicable to higher-dimensional problems than existing approaches. Second, our
method for automatically generating demonstration tasks for users to perform re-
duces the number of demonstration tasks needed to capture the desired behavior.
We tested our framework in simulated and physical test environments, and showed
that it recovers object sensitivities suitable for planning paths that imitate the behav-
ior of expert demonstrations. We also showed that these preferences can generalize
to new tasks.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: ICML
(2004)

2. Alterovitz, R., Goldberg, K.: Motion Planning in Medicine: Optimization and Simulation Al-
gorithms for Image-Guided Procedures (Springer Tracts in Advanced Robotics). Springer
(2008)

3. Chen, L., Rong, Y.: Linear time recognition algorithms for topological invariants in 3D. In:
International Conference on Pattern Recognition (2008)

4. Coumans, E.: Bullet 2.73 Physics SDK Manual (2010)
5. Faure, F., Gilles, B., Bousquet, G., Pai, D.K.: Sparse meshless models of complex deformable

solids. ACM Transactions on Graphics pp. 73–73 (2011)
6. Gibson, S.F.F., Mirtich, B.: A survey of deformable modeling in computer graphics. Tech.

rep., Mitsubishi Electric Research Laboratories (1997)
7. Irving, G., Teran, J., Fedkiw, R.: Invertible �nite elements for robust simulation of large defor-

mation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '04.
New York, New York, USA (2004)

8. Jiménez, P.: Survey on model-based manipulation planning of deformable objects. Robotics
and Computer-Integrated Manufacturing28(2), 154–163 (2012)

9. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P.,Schaal, S.: STOMP: Stochastic Trajec-
tory Optimization for Motion Planning. In: ICRA (2011)

10. Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.:Learning Objective Functions for Ma-
nipulation. In: ICRA (2013)

11. Kalman, R.: When is a linear control system optimal? Journal of Basic Engineering (1964)
12. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for Optimal Motion Planning. The

International Journal of Robotics Research30(7), 20 (2010)
13. Maris, B., Botturi, D., Fiorini, P.: Trajectory planning with task constraints in densely �lled

environments. In: IROS (2010)
14. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In:

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '02. New York,
New York, USA (2002)

15. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In: ICML (2000)
16. Phillips-Graf�in, C., Berenson, D.: A Representation Of Deformable Objects For Motion

Planning With No Physical Simulation. In: ICRA (2014)
17. Ratliff, N., Silver, D., Bagnell, J.A.D.: Learning to search: functional gradient techniques for

imitation learning. Autonomous Robots (2009)
18. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics &

Automation Magazine19(4), 72–82 (2012). http://ompl.kavrakilab.org
19. Ziebart, B.D., et al.: Maximum Entropy Inverse Reinforcement Learning. In: AAAI, pp. 1433–

1438 (2008)

