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Abstract— In order to efficiently learn a dynamics model
for a task in a new environment, one can adapt a model
learned in a similar source environment. However, existing
adaptation methods can fail when the target dataset contains
transitions where the dynamics are very different from the
source environment. For example, the source environment
dynamics could be of a rope manipulated in free space, whereas
the target dynamics could involve collisions and deformation
on obstacles. Our key insight is to improve data efficiency
by focusing model adaptation on only the regions where the
source and target dynamics are similar. In the rope example,
adapting the free-space dynamics requires significantly less
data than adapting the free-space dynamics while also learning
collision dynamics. We propose a new method for adaptation
that is effective in adapting to regions of similar dynamics.
Additionally, we combine this adaptation method with prior
work on planning with unreliable dynamics to make a method
for data-efficient online adaptation, called FOCUS. We first
demonstrate that the proposed adaptation method achieves
statistically significantly lower prediction error in regions of
similar dynamics on simulated rope manipulation and plant
watering tasks. We then show on a bimanual rope manipulation
task that FOCUS achieves data-efficient online learning, in
simulation and in the real world.

I. INTRODUCTION
Autonomous systems often rely on a dynamics model, which
predicts future states given actions, to reach a desired goal
state. However, general and accurate dynamics models only
exist for a narrow range of robotics problems. Learning these
dynamics models is an increasingly popular paradigm, in
part because learned models can be repeatedly improved
using autonomously collected real-world data. However, fine-
tuning an initial dynamics model on new data can perform
poorly when the data contains complex dynamics on which
the dynamics model was not initially trained. For example,
suppose we want to manipulate a rope amongst clutter, and
we have a dynamics model trained on free-space motions
in simulation. Free-space transitions in the real world are
fairly similar to free-space transitions in simulation, but
transitions where the rope deforms on objects in the scene
are very different from anything seen in simulation. We call
these transitions distracting, because they are hard to learn
from a few examples, and because they make it harder to
adapt accurately to the free-space dynamics. More generally,
transitions from regions of dissimilar dynamics can inhibit
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Fig. 1: (A) An illustration of how our adaptation method focuses
on regions where the source and target dynamics are similar. When
focusing adaption on free-space dynamics, the prediction errors
decrease for other free-space data (similar), and do not decrease
for collision dynamics (dissimilar). (B) A mock-up of a car engine
bay. The robot must move the rope and place it under the engine
without snagging it to set up for lifting the engine. We use our
proposed adaptation method to improve the success rate during
online learning for this task.

effective transfer to regions of similar dynamics. This prob-
lem is similar to “cleaning” data in machine learning [1]–[3].
For dynamics learning, defining what “clean” means can be
difficult, and has not been studied extensively. Instead, the
dominant paradigm is simply to train on all the collected
data.

However, training on all the data can fail because real-
world datasets for learning dynamics are often too small to
learn generalized models over the entire state-action space.
In our experiments, we show that simply fine-tuning on all
the data can yield a model that is not accurate enough for
planning. If the task can be completed while remaining in
regions where dynamics are similar, then it can be worth
trading accuracy in dissimilar regions for accuracy in similar
regions. Our key insight is that, when we are adapting from
an initial model, we can leverage the initial model to achieve
significantly lower prediction error by focusing on transitions
where the source and target dynamics are the most similar.
The idea that transfer is easier when the source and target
data are similar is well-supported in the transfer learning
literature [4], [5].

To implement this strategy, we propose an adaptation
method that minimizes prediction error in regions where the
source and target dynamics are similar. The proposed method
minimizes prediction error in these regions by fine-tuning on
an initially small set of data from these regions, and growing
that subset over the course of training. This is done with a
loss function inspired by curriculum learning that weights
transitions according to their prediction error, assigning a
higher weight to low-error transitions. Under the assumption



that there are paths to the goal where the source and target
dynamics are similar, this adaptation method can be used to
achieve high task success in the target environment.

The first contribution of this paper is a method for adapting
dynamics models to datasets that contain distracting transi-
tions. We demonstrate that the proposed method is successful
in filtering out distracting data and that the resulting model
is more accurate in the regions of state-action space where
the source and target dynamics are similar. The second
contribution is a data-efficient online-learning method that
pairs our adaptation method with prior work on planning with
unreliable dynamics models [6], [7]. We call our combined
method for online learning FOCUS. FOCUS achieves higher
success rates in the low-data regime because the adapted
dynamics are more accurate, which leads to finding more
reliable plans.

II. RELATED WORK
Adapting dynamics models: One approach to adaptation
is to use system identification to fit a global dynamics model
of the target domain [8]–[11]. Alternatively, domain random-
ization uses random variations of conditions during training
to make the model robust to that type of variance during
test time [12]. Some methods go further, and iteratively
refine the noise distribution by comparing simulations to
rollouts executed in the real world [13], [14]. These methods
require knowledge of how parameters can vary between the
source and the target domains. By contrast, our approach
needs no knowledge of how the system parameters such
as dynamical parameters, object geometry, and kinematics
may vary. Prior work has also used estimates of similarity
between the source and target system to guide adaptation, for
instance by selecting training data most similar to the source
system [4] or selecting the most useful source domain for a
given target domain [15]. Similarly, our approach focuses
both training and data collection on transitions with low
prediction error, which are easier to learn. Previous work
avoids negative transfer of dynamics from the source domain
that is harmful to performance in the target domain [4],
[16]. In contrast, our work focuses on avoiding distracting
dynamics in the target domain that inhibit effective transfer
to dynamics where the source and target are similar.

Data Cleaning: Data Cleaning is a term for methods that
aim to remove training examples that are harmful, incorrect,
or unhelpful [17]. Methods such as Majority Vote Filtering
or the Iterative-Partitioning Filter can remove mislabeled
classification data, but they do not apply to regression
problems and assume that the type of data we want to fit is
the majority type [1], [2], [18]. In contrast, learning dynamics
is a regression problem, and in our experiments, the data we
want to adapt to may be a minority.

Curriculum learning: Transfer learning methods work
best between similar source and target domains [4], [16]. To
tackle larger differences, curriculum learning methods use
intermediate problems through mechanisms such as pseudo-
labels or task selection, which has been successful in classifi-
cation, reinforcement learning, and machine translation [19]–

[22]. Like curriculum learning, our proposed method tries to
train on easier data first, and keep the difference between the
old and new data small [23]. However, unlike in standard
curriculum learning, we do not necessarily converge to
training on all data.

Planning with unreliable dynamics models: If a dynam-
ics model has a known probabilistic transition model, belief-
space planning can be used [24], [25]. Since meaningful
predictive uncertainty distributions are difficult to estimate
for novel scenarios, some methods instead directly predict
model error and use it as a constraint for planning [6],
[7], [26]. Rather than avoiding uncertainty, model-based
reinforcement learning methods try to reduce uncertainty by
collecting new data and fine-tuning the dynamics [11], [27].
In this work, we both adapt the dynamics online and avoid
inaccurate predictions, which we find results in higher task
success rates with less data.

Rope Manipulation and Plant Watering: Prior model-
based rope manipulation and plant watering methods op-
timize parameters of a simulator or neural network to
match real-world dynamics, as we do here. [14] also uses
a mechanism to avoid including data that is high error for a
particular local model. Typically, the goal is to learn a model
that is accurate for a wide range of dynamics for a task,
without prioritizing dynamics that may require less data to
learn [28]–[35]. Since linear deformable objects are so high-
dimensional, more work explores methods to learn or adapt
models for a subset of configurations [6], [26], [36].

III. METHODS
First, we formalize the dynamics adaptation problem studied
in this paper. Then, we describe our method for adapting the
dynamics. Finally, we describe how our adaptation method
can be used in an online adaptation framework to efficiently
learn a rope manipulation task.
A. Problem Statement
The problem addressed in this paper is to adapt a dynamics
model trained in a source environment to data collected in a
target environment, where the source and target environments
have dynamics that are similar in some regions of the
state-action space, but different in others. Furthermore, we
consider the case where data collection is done by planning
and executing paths to goals in the target environment using
the learned dynamics model.

To formalize this, first consider the standard dynamics
learning problem with a dataset D of transitions of states,
actions, and next states (s, a, s′). We also assume a distance
function d(s1, s2) that returns a scalar is given, and that the
state is fully observable. The true dynamics are s′ = f(s, a),
and the learned dynamics are ŝ′ = f̂(s, a). The initial
dynamics f̂0 is the model that is pre-trained in the source
environment and not yet adapted to the target environment.
We define the source and target environment dynamics as
similar for a transition if d

(
fS(s, a), fT (s, a)

)
< γ. The

threshold γ should be small enough that it excludes distract-
ing transitions, but large enough to include as much data from
the target environment as possible. Let DST be the set of
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Fig. 2: Block diagram showing the steps of our full online adapta-
tion method. A dynamics model is initialized offline in the source
environment (left), then adapted online in the target environment.

transitions from the target environment where this similarity
condition holds.

In order to minimize the amount of data needed for
adaptation to generalize, we aim to adapt the dynamics only
to transitions from regions where this similarity condition
holds (DST ). However, we also care about successfully
completing the task, and therefore we also assume there are
paths {s0, a0, . . . , aT−1, sT } to the goal sT ∈ G within the
regions of similar dynamics (st, at, st+1) ∈ DST . This also
means starting states are assumed to be in DST . If this is not
the case, a different source dynamics model may be needed.

While the ultimate objective of adaptation should be to
maximize task success in the target environment, an impor-
tant condition for task success is minimizing prediction error
on DST . If the goal is reachable within DST (as we assume),
the prediction error on DST is small (our objective), and
our motion planner is constrained to stay in DST , then we
can also expect high task success. Next, we discuss how
our adaptation method minimizes error on DST , followed
by how we can achieve high task success by additionally
constraining a motion planner to DST .

B. Adapting the Dynamics

Our objective is to minimize prediction error on DST . At
a high level, our method dynamically weights the training
data D such that transitions that are likely to be in DST

are given weights near 1, and transitions unlikely to be in
DST are given weights near 0. Given a transition from our
training data (s, a, s′) ∈ D, we cannot directly evaluate
whether that transition is in DST , since that would require
knowing the true dynamics fT . However, since the initial
dynamics f̂0 is trained to have low prediction error in the
source environment, transitions from the target environment
which also have low prediction error d

(
f̂0(s, a), s

′) < γ are
therefore in DST . By training on transitions with initially
low error, we expect the prediction error on other transitions
which belong to DST to also decrease. This slowly brings
more and more transitions to have prediction errors below γ.
On the other hand, the prediction error is unlikely to decrease
for transitions not in DST , because they are dissimilar to the
transitions with low initial error.

Thus, at each step j of training, we assign each transition
a weight as a function of the prediction error ||ŝ′− s′||2 and
multiply this weight by the loss. The full loss is shown in
Equation (1).

Source Target
Fig. 3: Source environment for bimanual rope manipulation (left)
and simulated target environment (right) where there is a robot,
obstacles, and the rope damping and stiffness are changed.
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Fig. 4: Source environment for plant watering (left) and target
environment (right) where there is an additional plant, and the
viscosity is tripled.

Lf =
1

T

T∑
t=1

(
||ŝt − st||2wt

)
wt = 1− σ

(
ϕ(j)(||ŝt − st||2 − γ)

) (1)

When ϕ(j) is higher, the sigmoid σ makes the boundary
harder. For example, we use ϕ(j) = 0.5j and ϕ(j) = 5j+3
in our experiments. When j is large, the boundary is almost
hard, and transitions with error below γ have a weight near
1 and transitions with error above have a weight near 0.
When j is small, the boundary is soft, and the weights vary
less. We found that allowing the weighting to be soft during
early training steps improves the stability in the case where
few or no transitions have errors below γ at the beginning
of training. Adding a constant term ensures that ϕ(j) >
0, which starts training with a harder boundary, reducing
catastrophic forgetting at the beginning. The parameter γ
can be chosen based on either the maximum error that
can be corrected by a low-level controller, or based on the
distribution of error on a validation set from the source
environment (e.g. the 97th percentile).
C. Online Learning
In this section, we describe how the proposed adaptation
method can be combined with prior work on planning
with unreliable dynamics to achieve data-efficient online
adaptation of dynamics models. A block diagram of the
full method, which we call FOCUS, is shown in Figure 2.
FOCUS consists of an offline phase and an online phase. In
the offline phase, we train a dynamics model using data from
the source environment, which in our experiments is a simple
simulation. We use random actions to collect a diverse set of
data and standard techniques for training the fully-connected
neural network dynamics model [6].

In the online phase, we adapt the learned dynamics model
to the target environment (e.g. the real world). This process
alternates between (1) collecting new data in the target
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Fig. 5: (center) Histograms showing weights assigned to the data
according to Equation (1) during the first 20 epochs of training.
A histogram is shown for each epoch, where color varies with
epoch, and these histograms are staggered along the y-axis. Initially,
the weights vary only slightly across the data, but the distribution
becomes strongly bimodal as training progresses. Examples of
transitions given weight 0 (left) and weight 1 (right) at the end
of training.

environment by planning and executing, (2) fine-tuning the
dynamics, and (3) fine-tuning the model deviation estimator
(MDE). We now explain the data collection and MDE fine-
tuning steps.

1) Planning and Execution for Data Collection
We use a kinodynamic RRT planner where nodes are

propagated using the learned dynamics model. Since the
learned dynamics are adapting to only DST and are not
accurate everywhere, we additionally constrain the planner
to stay in DST . Since DST is not known a priori, we train
another neural network, called a model deviation estimator
(MDE) [6], [7], [26], to predict the error of the dynamics
model (more details in Section III-C.2). In addition to
producing more robust plans, planning with MDEs has the
additional benefit of focusing data collection on DST . By
collecting more data where the source and target dynamics
are close, a larger fraction of D collected by the adaptation
procedure is likely to be in DST and more useful for training.

We use the MDE in planning as a constraint. If the
dynamics error predicted by the MDE is below a threshold
dmax, then we add it to the planning tree. We also randomly
accept transitions with high predicted dynamics error with
low probability (0.01), so that the planner will occasionally
return paths with exploratory actions (we call these random-
accepts). These exploratory actions are essential for training
the MDE since they can correct over-estimation of model
error from the MDE. The threshold dmax for allowable error
is similar to γ but may be set higher or lower to control the
exploration/exploitation tradeoff.

The robot uses the planner to attempt the task, and
repeatedly plans and executes open-loop until a timeout or
the goal is reached. If no plan is found that reaches the
goal, the plan which gets closest to the goal is executed.
This repeated planning and execution is called one episode.
After some fixed number of episodes (e.g. 10) we fine-tune
the dynamics and the MDE using all data collected so far
during the online phase.

Fig. 6: Prediction error for our method versus two baselines,
evaluated on a dataset of transitions from regions where the source
and target dynamics are similar.

2) Fine-tune MDE
The MDE is used to constrain planning to regions where

the dynamics model is predicted to be accurate, which has
three benefits. First, we do not know the true error during
planning, so the main purpose of the MDE is to give an
estimate of error. Second, it helps bias data collection to
contain transitions from DST . Third, it makes reaching the
goal more likely since it avoids plans that do not match the
true dynamics. The MDE d̂ = h(E , s, a, ŝ′) is a convolutional
neural network that takes as input the environment, state,
action, and next predicted state, and predicts the error of
the dynamics model d̂. We represent the environment E as
a voxel grid of the static scene. The ground truth error used
for training is the error between the true observed state and
the state predicted by the learned dynamics: d = d(ŝ′, s′).
The loss function is shown in Equation (2). Intuitively, the
MDE should be easier to learn with less data than learning
the dynamics accurately everywhere, since the MDE need
only predict the magnitude of the error as opposed to the
full state vector [6].

Lh = ||d̂− d||2e−khd (2)
kh is a hyperparameter that reduces the need to predict

high dynamics errors with high accuracy. We set kh = 10.

IV. RESULTS
We begin by describing the two domains for our experi-
ments: bimanual rope manipulation and plant watering. We
then validate the claims that (1) our proposed adaptation
method achieves lower prediction error in regions of similar
dynamics, and (2) that FOCUS achieves higher success rates
more quickly in the online adaptation setting compared to
baselines that train on all data equally.

Bimanual Rope Manipulation: In this task, a 16-DOF
dual-arm robot is holding two ends of a rope in a scene
resembling the engine bay of a car (scene shown in Figures
1,3). The task mimics putting on lifting straps on the engine,
which requires moving the rope through narrow passages and
around protrusions. The goal is to place the middle of the
rope in a goal region defined as a sphere of radius 0.045m.
The planner outputs gripper position actions, and a local
controller executes the actions while maintaining gripper
orientations. The learned dynamics model predicts the state
of the rope, represented as 25 points in 3D, given the initial
rope state and gripper position actions. The distance function
is the L2 norm of all rope points.



In the rope manipulation experiments, the source simula-
tion has no obstacles and the robot is simplified to floating
kinematic grippers. We then test adaptation to two different
target environments: (1) another simulation that includes the
robot and obstacles and has different damping and stiffness
parameters for the rope, and (2) the real world. This tests
adaptation to a different rope despite the distracting transi-
tions where the rope deforms on the robot or the obstacles.
Gazebo with ODE physics is used for simulation [37]. For
rope manipulation, the set DST would be the transitions from
the target environment where the rope is in free space. We
use γ = 0.08.

Plant Watering: The goal in this task, illustrated in
Figure 4 is to pour at least 75% of the initial volume
from a controlled container into a target container with-
out spilling more than 2%. The source environment is a
variation from the SoftGym PourWater environment [38].
The controlled container can rotate about the z-axis. The
state space is the 4-DOF [x, y, z, θ] pose of the controlled
container, 3-DOF [x, y, z] pose of the target container, control
volume, and target volume. The action space is a target
pose [xdes, ydes, θdes] which is followed by a proportional
controller. The distance function d is a weighted sum of the
distance in x, y, theta, and volume.

The target environment has triple the viscosity, a shorter
container, and a plant in the target container. Although the
agent can pour from above, that causes the water to splatter,
which is more difficult to predict than the free-space pours
of the target environment. Additionally, the box can collide
with the plant, which is dissimilar to the source dynamics
where there are no obstacles. The set DST contains free-
space motions and pours, whereas collision with and pouring
on the plant is not in DST . We use γ = 0.10.
A. Validating the Adaptation Method
We now evaluate whether the proposed adaptation method
achieves lower prediction error on DST . We start by creating
validation sets that contain transitions not used for training,
and which are known to be in DST . For rope, this means
transitions where the rope is in free space. For water, this
means transitions that do not collide with or pour over the
plant. We evaluate our method and two baselines, all starting
from the same pre-trained model and adapting to the same
dataset from the target environment. The baseline AllData
fine-tunes on all transitions with equal weights. The baseline
LowInitialError uses our weighting function, but computes
the weights once using f̂0 and does not re-compute them
throughout training. Our method uses our proposed loss
function (Equation (1)) which re-computes the weights on
each batch during training. We do not compare to domain
randomization methods, which require knowledge of which
physical parameters may vary and corresponding bounds.

For bimanual rope manipulation, the dataset contains 6288
transitions and the validation set contains 792 transitions. For
plant watering, the training dataset contains 854 transitions
and the validation set contains 130 transitions. The results
are visualized in Figure 6. In both experiments, the error
of our method is statistically significantly lower than both

baselines (p < 0.0001).
Figure 5 demonstrates the intuition behind our adaptation

method. In the center, we show histograms over time of the
weights assigned to the transitions in the training dataset,
for water and for rope. The distribution is initially unimodal
since the weighting function when j = 0 is soft, but as
training progresses the distribution rapidly becomes bimodal,
where most transitions are given a weight of 1, but some
transitions are given a weight of 0. We show examples
of these low and high weight transitions on either side.
For rope manipulation, we found that the number of the
transitions with prediction error below γ increases from 52%
at epoch 1 to 80% at epoch 20, which shows that the subset
of data we train on grows. This explains why our method
outperforms the LowInitialError baseline, since that baseline
is not making use of as much of the data as our method
does. The presence of transitions with 0 weight (e.g. 20%
for the rope domain at epoch 20) shows that our method is
not converging to training on all examples, which does not
perform well based on the AllData baseline.
B. Online Learning Experiments
We show that FOCUS achieves higher task success with
less data than baselines which fine-tune the dynamics on
all available data. The first baseline, called AllDataNoMDE
does not use our proposed adaptation method and does not
use MDEs when planning, making it a conventional online
learning method. The second, called AllData includes MDEs
in planning but ablates our fine-tuning method. First, we
evaluate our method in the rope manipulation domain on
adaptation from one simulation to another (see Figure 3). We
ran 20 iterations of online learning, where each iteration con-
sists of 10 episodes for rope manipulation, and 27 episodes
for plant watering (≈6000 total transitions during learning).
We then repeated this 10 times for each method/baseline with
different random seeds.

After learning, we took the models saved after each
learning iteration and ran 100 episodes of evaluation per
method. To maximize the success rates of all methods, we
use a longer timeout and do not allow random-accepts when
planning. We also stop execution and replan if the error
between the plan and the observed state exceeds a large
threshold on model error (0.25).

The results of this experiment are summarized in Figure
7. In both tasks, the proposed method (FOCUS) shows the
highest data efficiency in achieving the goal. In the rope
manipulation task, AllData, never finds paths to the goal.
This is because its dynamics are not sufficiently accurate,
and so the MDE constraint makes the planning problem
infeasible. Accurately learning the dynamics using AllData
or AllDataNoMDE involves predicting the deformation of
the rope on obstacles, which is challenging given a dataset
of only a few thousand transitions. The boundary of DST

is less extreme in the watering task, enabling both baselines
to achieve high success rates, though using more data than
FOCUS. By inspecting the behavior of the methods, we
found that our method quickly focuses on pours that do not
interact with the plant, improving data efficiency.



Rope Manipulation

Plant Watering

Fig. 7: Post-learning evaluation of planning during test time in simulation: Metrics shown over the 20 iterations of online learning. If
the planner does not find a plan that reaches the goal, the plan with the lowest distance to the goal is executed. We report (1) overall
success, (2) success given that the plan reaches the goal, (3) and the percentage of plans that reach the goal. The shaded interval is the
95% confidence interval of the mean, with the boot-strapping method used by Seaborn.

Fig. 8: Success rate for the AllDataNoMDE baseline (left) versus
FOCUS (right) for online adaptation to real-world bimanual rope
manipulation. Error bars show the 95% confidence interval.

C. Real Robot Results

To demonstrate how FOCUS enables a robot to quickly learn
a task in the real world, we performed a similar experiment
to the first rope manipulation experiment, but on real robot
hardware. where sensor and actuator noise are substantial
factors (approximately 5 cm of end-effector error). We use
CDCPD2 [39] to track the rope state. The geometry of the
car scene is approximated with primitive geometric shapes.
We use the same source simulation environment as for the
simulation rope experiment, but now the target environment
is the real world. The robot should adapt the simulated free-
space rope dynamics to the real world, despite the different
real-world free-space dynamics and the fact that the rope can
deform on the robots’ arms or on the objects in the scene.
Because perception error and actuation error are higher in
the real world than in simulation, we use γ = 0.2.

We ran the online learning procedure with a single start
configuration and a single goal region for one random seed
and compare FOCUS to the AllDataNoMDE baseline, since
AllDataNoMDE performed best in simulation. After 15 itera-
tions of learning, we freeze the models and evaluate task suc-
cess 32 times. In our unoptimized implementation, planning
and fine-tuning the models took comparable amounts of time,
each taking between 1 and 30 minutes depending on task

complexity/dataset size. A more advanced implementation
would run fine-tuning in parallel with execution so that the
robot is idle only while planning.

The success rates are shown in Figure 8. With FOCUS,
the robot successfully placed the rope under the engine 15/32
times, while AllDataNoMDE succeeded 11/32 times. Failure
modes for FOCUS include the rope getting pulled out of the
robots’ hands, getting too close and catching on obstacles,
and failing to find plans that reach the goal. We find less
improvement in the real world than in simulation, which may
be due to perception and significant actuator error.

V. CONCLUSION
This paper studies the problem of adapting learned dynamics
models to datasets that contain transitions where the dynam-
ics are very different from the source environment. This type
of domain mismatch is common in online dynamics learning
settings, where the source dynamics are learned in simulation
or on a simpler task. Traditional adaptation methods can
fail in this setting because trying to fit data from regions of
dissimilar dynamics leads to poor predictions even in regions
where the source and target dynamics are similar.

Our key insight is to instead focus adaptation on regions
where the source and target dynamics are similar. We propose
an adaptation method that assigns high weight to transitions
with low prediction error, and dynamically re-assigns weights
during the course of training. The set of low-error transitions
is initially a small set, but grows as training pulls down the
prediction error for other similar transitions. We combine
our adaptation method with prior work on planning with
unreliable dynamics to make FOCUS, a data-efficient online
adaptation method. We demonstrate that FOCUS can learn a
bimanual rope manipulation task in simulation and in the real
world, and achieves higher task success rates than baselines
that attempt to fit all the training data.



REFERENCES

[1] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled training
data. Journal of Articial Intelligence Research, 1999.

[2] Gaoxia Jiang, Wenjian Wang, Yuhua Qian, and Jiye Liang. A unified
sample selection framework for output noise filtering: An error-bound
perspective. JMLR, 2021.

[3] Daniel Bogdoll, Maximilian Nitsche, and J. Marius Zöllner. Anomaly
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[23] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason We-
ston. Curriculum learning. ICML, 2009.

[24] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and
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