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Gaussian Process Constraint Learning for Scalable
Chance-Constrained Motion Planning from

Demonstrations
Glen Chou*, Hao Wang*, and Dmitry Berenson

Abstract—We propose a method for learning constraints repre-
sented as Gaussian processes (GPs) from locally-optimal demon-
strations. Our approach uses the Karush-Kuhn-Tucker (KKT)
optimality conditions to determine where on the demonstrations
the constraint is tight, and a scaling of the constraint gradient at
those states. We then train a GP representation of the constraint
which is consistent with and which generalizes this information.
We further show that the GP uncertainty can be used within
a kinodynamic RRT to plan probabilistically-safe trajectories,
and that we can exploit the GP structure within the planner to
exactly achieve a specified safety probability. We demonstrate our
method can learn complex, nonlinear constraints demonstrated
on a 5D nonholonomic car, a 12D quadrotor, and a 3-link
planar arm, all while requiring minimal prior information on
the constraint. Our results suggest the learned GP constraint
is accurate, outperforming previous constraint learning methods
that require more a priori knowledge.

Index Terms—Learning from Demonstration, Planning under
Uncertainty, Machine Learning for Robot Control, Robot Safety

I. INTRODUCTION

THE need for robots that can safely perform tasks in
unstructured environments has increased as robots are

deployed in the real world. One popular paradigm for teach-
ing robots tasks is learning from demonstration (LfD) [1],
[2] via inverse optimal control (IOC), which assumes the
demonstrator is solving an unconstrained optimization, and
learns the underlying reward/cost function. However, hard
constraints are crucial for safety-critical applications and are
not well-enforced by these methods [3]. To address safety
in LfD, recent work has represented tasks as constrained
optimization problems, and learns the unknown cost function
and constraints from demonstrations [4], [5], [6], [7], [8]
via the Karush-Kuhn-Tucker (KKT) optimality conditions,
enabling constraint learning for complex manipulation and
mobile robotics tasks. However, these methods require that
the unknown constraints can be described by an a priori
known representation or parameterization (e.g. as a union
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of axis-aligned boxes [4], [9]), restricting these methods to
the learning of highly-structured constraints. Moreover, such
representations can be highly inefficient (e.g. many boxes may
be required to approximate complex constraints), leading to
a computational burden that makes it challenging to scale
these methods up to learn realistic constraints. Consider a
demonstrator steering a quadrotor to avoid collisions with a
tree (Fig. 1). On the one hand, we are unlikely to obtain an
efficient constraint representation for learning trees a priori
unless we can learn one (e.g. via deep learning) using an
enormous number of demonstrations, and on the other hand,
a prohibitive number of boxes is needed to represent the tree.

(A) (B) (C) (D)

Fig. 1. Demonstrations (black) avoiding a tree-like obstacle on a 12D
quadrotor. (A) True constraint (blue); plans using the GP constraint (gold).
(B) Posterior mean of the GP constraint (blue). (C) Errors of GP posterior
mean w.r.t. the true constraint. (D) Constraint learned via [4] using 6 boxes.

We address these issues via the insight that the demon-
strations’ Karush-Kuhn-Tucker (KKT) optimality conditions
provide information on 1) where the unknown constraint
is tight on the demonstrations, and 2) the gradient of the
constraint (i.e. the surface normal on the constraint boundary)
at those points. Crucially, we show that this information can
be extracted in a way that is agnostic to the chosen constraint
representation. This is in sharp contrast to prior work [4],
which uses the KKT conditions to directly determine a set of
constraint parameters, for a fixed constraint parameterization,
which make the demonstrations satisfy their KKT conditions.
This representation-agnostic constraint information can be
incorporated into a flexible non-parametric Gaussian process
(GP) function approximator, which enables constraint learning
while requiring minimal a priori knowledge on the underlying
constraint structure. Our contributions are:

• We show how to use the demonstrations’ KKT conditions
to extract information on the values and gradients of the
unknown constraint, how to ensure it is robust to the ill-
posedness of the constraint learning problem, and how it
can be jointly incorporated into a GP.
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• We show how the uncertainty of the learned GP constraint
can be used to plan chance-constrained trajectories which
satisfy the unknown constraint with a specified probabil-
ity, and how the Gaussian structure of the uncertainty can
be exploited in the planner to exactly compute trajectory
safety probabilities.

• We evaluate our method on complex nonlinear constraint
learning problems demonstrated on a 5D nonholonomic
car, a 12D quadrotor and a three-link planar arm, showing
that our method outperforms baselines.

II. RELATED WORK

Our method is related to prior work in IOC [8], [10], [11]
that uses the KKT conditions to learn an unknown cost func-
tion, assuming the constraints are known. Other IOC methods
[12], [13], [14] use flexible function approximators to learn
unknown cost functions without using known features, again
assuming known constraints. Our approach is complementary
to these methods, as it seeks to learn the constraints.

Our work also builds upon constraint learning methods [4],
[5], [6], [15], which often assume a known constraint param-
eterization to simplify the inverse problem which recovers
the unknown constraint [4], [9]. When this assumption is
removed [6], the unsafe set defined by the unknown constraint
is assumed to be well-approximated by a finite union of simple
unsafe sets, e.g. axis-aligned boxes [6]. However, the inverse
problem scales exponentially with the number of simple sets,
as each set adds binary decision variables to the optimization.
This renders complex constraints infeasible to learn unless the
true constraint representation is known, restricting previous
methods (e.g. [4], [9]) to learn simple constraints, e.g. unions
of a few boxes [4], [9], or to know the parameterization [5,
Fig. 6] [4, Fig. 2]. Our work is also related to methods that
plan using the uncertainty in the learned constraint, e.g. [9].
However [9] scales exponentially in the number of simple
unsafe sets; in contrast, we use the uncertainty of the GP
constraint to scale more gracefully.

Finally, our work relates to planning under uncertainty,
where the uncertainty may arise from sensing [16], state
estimation [17], motion [18], and the environment/obstacles;
our work relates most closely to this final case. [19] plans
with uncertain obstacles via chance-constrained optimization
and requires polytopic obstacles and linear Gaussian dynamics.
Under similar assumptions, [20] embeds chance constraints
in a Rapidly-Exploring Random Tree (RRT) [21]. In con-
trast, we assume deterministic dynamics but can handle GP-
representable constraints and nonlinear dynamics.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Demonstrator’s problem and KKT optimality conditions

We represent a length T demonstration of a task σ per-
formed on a deterministic discrete-time nonlinear system
xt+1 = f(xt, ut, t), x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu

as a constrained optimization over state/control trajectories
ξxu

.
= (ξx, ξu)

.
= [x1, . . . , xT , u1, . . . , uT−1]:

Problem 1 (Forward (demonstrator’s) problem / task σ).
minimize

ξxu

cσ(ξxu)

subject to ϕ(ξxu) ∈ S ⊆ C ⇔ g∗
¬k(ϕ(ξxu)) ≤ 0

ϕ̄(ξxu) ∈ S̄ ⊆ C̄, ϕσ(ξxu) ∈ Sσ ⊆ Cσ
⇔ hk(ξxu) = 0, gk(ξxu) ≤ 0

where cσ(·) is a known, possibly task-dependent cost function,
and ϕ(·) maps state/control trajectories to constraint states κ
in constraint space C (i.e. κ ∈ C), where the constraint is
evaluated. For example, for an obstacle constraint, ϕ(·) would
select the position components of the states. The safe set
S ⊆ C ⊆ Rnc is defined by the unknown inequality constraint
g∗
¬k(ϕ(ξxu)) ≤ 0 and is unknown to the learner. ϕ̄(·) and

ϕσ(·) map to spaces C̄ and Cσ , containing a known task-shared
safe set S̄ and task-dependent safe set Sσ , defined by known
equality and inequality constraints hk(ξxu) = 0, gk(ξxu) ≤ 0.
We embed the dynamics in S̄ and the start/goal constraints
in Sσ . We focus on unknown scalar, state-dependent, time-
separable inequality constraints

g∗
¬k(ϕ(ξxu)) ≤ 0 ⇔ g∗¬k(ϕsep(xt)) ≤ 0, ∀t = 1, ..., T, (1)

where ϕsep : X 7→ C is the time-separable counterpart of ϕ(·),
g∗¬k : C 7→ R, and κt = ϕsep(xt). We note that extending
to control-dependent constraints is straightforward. Moreover,
we can learn the (un)safe set for an M -dimensional vector-
valued constraint by learning g∗¬k(·) = maxi=1,...,M g∗i,¬k(·).
We assume each demonstration ξloc solves Prob. 1 to local
optimality, satisfying Prob. 1’s KKT conditions [22]. With
Lagrange multipliers λ, ν, the relevant KKT conditions for
the jth demonstration ξjloc, denoted KKT(ξjloc), are:

Primal feasibility: g∗
¬k(ϕ(ξ

j
loc)) ≤ 0, (2a)

Lagrange mult. λj
k ≥ 0 (2b)

nonnegativity: λj,t
¬k ≥ 0, t = 1, ..., T j ⇔ λj

¬k ≥ 0 (2c)
Complementary λj

k ⊙ gk(ξ
j
loc) = 0 (2d)

slackness: λj
¬k ⊙ g∗

¬k(ϕ(ξ
j
loc)) = 0 (2e)

Stationarity: ∇ξxucσ(ξ
j
loc) + λj

k
⊤∇ξxugk(ξ

j
loc)

+ λj
¬k
⊤∇ξxug

∗
¬k(ϕ(ξ

j
loc)) (2f)

+ νj
k
⊤∇ξxuhk(ξ

j
loc) = 0

where ⊙ denotes element-wise multiplication. Here, λj
k ∈

RNj
ineq , νj

k ∈ RNj
eq , and λj

¬k ∈ RT j

are vectorized La-
grange multipliers for the known inequality, known equality,
and unknown inequality constraints for ξjloc, i.e. λj

¬k =

[λj,1
¬k, . . .λ

j,T j

¬k ]. The blue quantities are unknown to the
learner. Intuitively, (2a) enforces that ξjloc is feasible for Prob.
1 (it lies in S and satisfies the known constraints), that a
multiplier is zero unless its associated constraint is tight (2b)-
(2e), and that its cost cannot be locally improved (2f).

In previous work [4], [9], the unknown constraint is modeled
as g∗¬k(z, θ), where θ are parameters for a known repre-
sentation of g∗¬k with a low-order dependence on θ, e.g.
linear g∗¬k(z, θ) = θ⊤g(z), where g(z) are known features;
the constraint learning problem then reduces to finding θ.
In contrast, we do not require a known parameterization for
g∗¬k(·), instead approximating g∗¬k(·) as a GP to be learned.

B. Overview of Gaussian processes

A GP is a set of (potentially infinitely many) random
variables, any finite number of which have a joint Gaussian
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Section IV.A: Extracting constraint values and gradients

Fig. 2. We
obtain constraint
values/gradients
(Sec. IV-A)
to train a
GP constraint
(Sec. IV-B) for
planning (Sec.
IV-C)

distribution [23]. It is defined by a mean function m(x) and
a covariance function k(x, x′). In regression, GPs are often
used as the prior distribution for an unknown function f(x)
of interest, i.e. f ∼ GP(m, k). Given an input-output dataset
D = {(xn, yn)}Nd

n=1, and assuming a noisy observation model
yn ∼ N (f(xn), σ

2), the predictive conditional posterior f̃ |D
is also a Gaussian if a GP is used as the prior. In performing
inference at a set of points {zm}Nq

m=1, the posterior mean and
covariance on these points are given by

E[f̃(Z)|D] = k(Z,X)(k(X,X) + σ2I)−1Y, (3)

cov(f̃(Z)|D) = k(Z,Z)− k(Z,X)(k(X,X) + σ2I)−1k(X,Z). (4)

where Z, X, and Y are vectors containing all elements in
{zm}Nq

m=1, {xn}Nd
n=1, and {yn}Nd

n=1, respectively [23].

C. Problem statement

Given locally-optimal demonstrations {ξjloc}Ndem
j=1 , we want

an estimate g¬k(·) of the unknown constraint g∗¬k(·), defining

S = {ϕsep(x) | g¬k(ϕsep(x)) ≤ 0} = {κ | g¬k(κ) ≤ 0} (5)

as a safe set that is consistent with the demonstrations’ KKT
conditions, where the true constraint g∗¬k(·) is assumed to be a
sample from GP(m, k). Moreover, we wish to use the learned
constraint to plan trajectories ξplan

xu that connect novel start/goal
states while satisfying g∗¬k(·) with at least some specified
probability 1− δ, i.e. Pr(g∗

¬k(ϕ(ξ
plan
xu )) ≤ 0) ≥ 1− δ.

IV. METHOD

Our method determines where the unknown constraint is
tight and its gradient at those points from the KKT conditions
(Sec. IV-A), uses this information to train a GP representation
of the constraint (Sec. IV-B), and plans novel probabilistically-
safe trajectories using the learned constraint (Sec. IV-C). We
overview the flow of our method in Fig. 2.

A. Obtaining constraint value and gradient information

For a locally-optimal demonstration, the KKT conditions
(2) provide information on the following:
A) If/when the unknown constraint g∗¬k(·) is tight (i.e. at

which time steps of the demonstration g∗¬k(ϕsep(xt)) = 0)
via complementary slackness (2e) and stationarity (2f).

B) How the constraint changes locally around these tight
demonstration points, in the form of the constraint gradient
at that point, ∇xt

g∗¬k(ϕsep(xt)), via stationarity (2f).
Combining both sources of information is crucial in recovering
an accurate constraint that is KKT-consistent.

1) Constraint value information: We first describe
a method for inferring when the unknown constraint
g∗¬k(·) is tight. As shorthand, let the stationarity residual
sj(λj

k,λ
j
¬k,ν

j
k) = [sjx1

(λj
k,λ

j
¬k,ν

j
k), ..., s

j
xT

(λj
k,λ

j
¬k,ν

j
k),

sju1
(λj

k,λ
j
¬k,ν

j
k), ..., s

j
ut
(λj

k,λ
j
¬k,ν

j
k)]

⊤ ∈ R|ξxu| be the LHS
of the stationarity condition (2f) for the jth demonstration
ξjloc, where sjxt/ut

(λj
k,λ

j
¬k,ν

j
k) ∈ Rnx/Rnu is the sub-vector

containing the residual terms for xt / ut.
Recall that complementary slackness (2e) enforces that at

each timestep, the Lagrange multiplier for the the unknown
constraint is zero unless the constraint is tight. Moreover, as
any locally-optimal trajectory ξloc must satisfy the stationarity
condition (2f), we can determine that the unknown constraint
g∗¬k(·) must be tight on ξjloc at timestep t if we cannot force the
norm of the stationarity residual at that timestep to be zero,
i.e. ∥sjxt

∥ > 0, while also enforcing that g∗¬k(ϕsep(xt)) is not
tight (cf. Fig. 3.A for intuition) and that the KKT conditions
for the known constraints are satisfied. This is achieved by
solving Prob. 2 – a rapidly-solvable linear program (LP):

Problem 2 (Tightness check at time t on demonstration j).
minimize

λj
k,ν

j
k

∥∥sjxt
(λj

k,0,ν
j
k)∥1

subject to (2b), (2d),

where the effect of the unknown inequality constraint on the
residual is erased by zeroing out its corresponding Lagrange
multipliers λj

¬k. Then, the following result holds:

Corollary 1. If the optimal value of Prob. 2, denoted pt,j,∗2 , is
greater than 0, then the true constraint is tight: g∗¬k(κ

j
t ) = 0.

Proof. Suppose for contradiction that g∗¬k(κ
j
t ) < 0. Then,

since ξjloc satisfies (2), g∗¬k(κ
j
t ) < 0 implies via (2e)-(2f) that

there exists λj
k, λj

¬k = 0, νj
k such that pt,j,∗2 = 0. However,

by the theorem statement, pt,j,∗2 > 0. Contradiction.

By solving Prob. 2 and checking if pt,j,∗2 > 0 for t =
1, . . . , T j , we can find a set of timesteps where g∗¬k(κ

j
t ) = 0;

call these identified tight timesteps tjtight. Intuitively, Prob. 2
checks if we can ensure g∗¬k(κ

j
t ) = 0 despite the known

constraints, e.g. dynamics, control constraints, which may be
simultaneously tight. By solving Prob. 2

∑Ndem
j=1 T j times (once

for each timestep), we can check tightness over the entire
dataset. We close with two important remarks. First, comple-
mentary slackness and stationarity do not provide information
on g¬k(κ

j
t ) for timesteps tj¬tight

.
= {1, . . . , T j} \ tjtight; we

can only deduce using primal feasibility that g∗¬k(κ
j
t ) ≤ 0

for t ∈ tj¬tight. Second, the estimated set of tight timesteps
ttight may only be a subset of the true set of tight timesteps,
i.e. tjtight ⊆ {t | g∗¬k(κ

j
t ) = 0}; this is because the system

may lie on the constraint boundary but the cost cannot be
improved by crossing it (Fig. 3.C), i.e. there are multipliers
such that ∥sjxt

(λj
k,0,ν

j
k)∥1 = 0 despite λj,t

¬k = 0; KKT cannot
guarantee that these points are tight.

2) Gradient value information: Next, we obtain a set of
KKT-consistent gradients of the unknown constraint at each
identified tight timestep t ∈ tjtight. In Prob. 3, we set the
Lagrange mutipliers λj,t

¬k = 1, for all t ∈ tjtight, and set the
non-tight Lagrange multipliers as λj,t

¬k = 0, for all t ∈ tj¬tight;
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xt−1

xt

xt+1

∇xtc(ξxu)

ScS

xt−2 ∇xt−1
c(ξxu) = 0

∇xt−2
c(ξxu) = 0

∇xt−1
c(ξxu) = 0

1 · ∇xtg
∗
¬k(xt)

xt−1

xt

xt+1

∇xtc(ξxu)

ScS

0 · ∇xtg
∗
¬k(xt)

xt−2 ∇xt−1
c(ξxu) = 0

∇xt−2
c(ξxu) = 0

∇xt−1
c(ξxu) = 0

invalid 
gradients

(A) (B)
xt−1

xt

xt+1

∇xtc(ξxu) = 0

ScS

xt−2

0 · ∇xtg
∗
¬k(xt)

(C)

Fig. 3. Consider a demonstrator minimizing path length on a kinematic
system; ϕsep(xt) = xt ∈ R2. In this simplified setting, we can interpret (2f)
as balancing between vectors ∇c and λ∇g¬k; if they cancel to 0, stationarity
holds. We visualize this for Prob. 2-3. (A) Prob. 2: ∥sxt∥ can only go to zero
if λt

¬k > 0; thus, we detect g∗¬k(xt) = 0. (B) Prob. 3: only a scaling of the
magenta constraint normal can make ∥sxt∥ = 0; all gradients in gold are not
anti-parallel to ∇c and cannot cancel it. (C): sometimes if g∗¬k(xt) = 0, it’s
still possible for ∥sxt∥ = 0 with λt

¬k = 0.

denote the concatenation of the multipliers as 1tight(ξ
j
loc). We

then solve for gradients ∇xt
g¬k(ϕsep(x

j
t )), for all t ∈ tjtight,

which make the demonstration KKT-consistent along with the
Lagrange multipliers of the known constraints:

Problem 3 (Gradient identification on demonstration j).
find λj

k,ν
j
k,∇xt

g¬k(ϕsep(x
j
t )),∀t ∈ tjtight

subject to (2a), (2b), (2d)
sj(λj

k,1tight(ξ
j
loc),ν

j
k) = 0.

Prob. 3 remains an LP as we fix λj
¬k to avoid bilinearity. To

show this does not overly restrict the set of KKT-consistent
gradients, we show that while the true gradient may be not be
feasible for Prob. 3, a positive scaling of it will be. A scaled
gradient is acceptable for two reasons. First, it can be impossi-
ble to uniquely identify an unscaled gradient via KKT alone:
by letting the tight multipliers λj,t

¬k, t ∈ tjtight take positive
non-unit values, they can scale their values to satisfy KKT for
different scalings of ∇xt

g¬k(ϕsep(x
j
t )). Second, while a scaled

gradient affects how quickly the constraint changes away from
the tight point, it does not affect the shape of the constraint
(i.e. it does not rotate the unit surface normal vector at the
boundary of the unsafe set). Let F be the feasible set of Prob.
3 and proj∇g¬k

(F)
.
= {∇g¬k | ∃(λk,νk,∇g¬k) ∈ F}. Then,

we have the following result:

Theorem 1. A positive scaling of the true constraint gradient
αj
t∇xtg

∗
¬k(ϕsep(x

j
t )), for αj

t > 0, for all t ∈ tjtight, is contained
in proj∇g¬k

(F).

Proof. Since ξjloc is locally-optimal, it satisfies its KKT con-
ditions; i.e. there exists λj

k ≥ 0, νj
k, and λj

¬k ≥ 0, where
λj,t
¬k = 0, for all t ∈ tj¬tight. This is via Prob. 2: if t ∈ tj¬tight,

the KKT conditions can be satisfied if λj,t
¬k = 0. Denote

one such KKT-consistent set of multipliers as λj,∗
k , νj,∗

k , and
λj,∗
¬k. As g∗¬k(·) is state-dependent and time-separable, we can

write λj⊤

¬k∇ξxug
∗
¬k(ϕ(ξ

j
loc)) = [λj,1

¬k∇x1g
∗
¬k(ϕsep(x

j
1)), . . . ,

λj,T
¬k ∇xT

g∗¬k(ϕsep(x
j
T )),01×nu(T j−1)]. Then, a feasible so-

lution for Prob. 3 is λj
k = λj,∗

k , νj
k = νj,∗

k , and
∇xt

g¬k(ϕsep(x
j
t )) = λj,∗,t

¬k ∇xt
g∗¬k(ϕsep(x

j
t )), for all t ∈ tjtight.

Thus, the theorem holds by setting αj
t = λj,∗,t

¬k .

While fixing λj
¬k restricts proj∇g¬k

(F) and reduces scaling
ambiguity, due to other active constraints, these recovered
KKT-consistent gradients may still not be unique. While scaled
gradients are tolerable, a rotation of the true gradient can also
lie in proj∇g¬k

(F), complicating the learning as: 1) the unsafe

p⇤4 Sc Sc

rxt
g̃¬k(xt) rxt

g̃¬k(xt)

(A) (B)

p⇤5

Fig. 4. Prob. 4 and 5 intuition. (A): Prob. 4 searches for a new gradient
orthogonal to the original gradient by maximizing the distance from the origin
as measured in the coordinates of ∇xt g̃

⊥
¬k . If p∗4 = 0 (i.e. the gradient

remains in the gap between the blue areas as the gap → 0), the new gradient
must remain in the span of the original gradient. (B): Prob. 5 searches for
a new gradient with minimal dot product w.r.t. the original gradient; if the
result remains in the blue semicircle (i.e. p∗5 > 0) and p∗4 = 0, the gradient
from Prob. 3 is unique up to a scaling.

set shape becomes uncertain, 2) modeling gradient uncertainty
is challenging, as determining the set of all consistent gradient
vectors is computationally intensive [9], and 3) the gradient
uncertainty cannot be well-modeled by a Gaussian distribution,
as required by our GP representation.

Though quantifying the uncertainty in the constraint gra-
dients is challenging, we can efficiently check if a given
KKT-consistent normal vector is unique, modulo a positive
scaling. This can be done by checking that there does not
exist another KKT-consistent normal vector that either A) lies
in the orthogonal complement of the given normal vector or
B) points in directly the opposite direction (see Fig. 4). Let
∇xt

g̃j¬k be the gradient returned by Prob. 3 for timestep t on
ξjloc and ∇xt g̃

j,⊥
¬k ∈ Rnc×(nc−1) as a basis for its orthogonal

complement. Then, condition A) can be checked by solving:

Problem 4 (Orthogonal check at time t on demonstration j).
maximize

λj
k,ν

j
k,∇xtg¬k(ϕsep(x

j
t))

∥∥∇xt
g¬k(ϕsep(x

j
t ))

⊤∇xt
g̃j,⊥¬k ∥1

subject to (2a), (2b), (2d)
sj(λj

k,1tight(ξ
j
loc),ν

j
k) = 0.

Intuitively, Prob. 4 searches for an alternate gradient in the
orthogonal complement of the gradient obtained via Prob. 3
such that some assignment of multipliers also exists to satisfy
the KKT conditions. Due to the non-convex objective, Prob.
4 can be modeled as a mixed integer linear program (MILP)
with only a small number of binary variables, thus remaining
rapidly-solvable. Next, condition B) can be checked via:

Problem 5 (Anti-parallel check; time t on demonstration j).
minimize

λj
k,ν

j
k,∇xtg¬k(ϕsep(x

j
t))

∇xt
g¬k(ϕsep(x

j
t ))

⊤∇xt
g̃j¬k

subject to (2a), (2b), (2d)
sj(λj

k,1tight(ξ
j
loc),ν

j
k) = 0.

Prob. 5, an LP, searches for a KKT-consistent gradient min-
imizing the dot product with ∇xt

g̃j¬k, i.e. pointing as anti-
parallel to the original gradient as possible. Thm. 2 shows
how Probs. 4-5 can check gradient uniqueness. Denote the
optimal values of Prob. 4 and 5 as p∗4 and p∗5. We have:

Theorem 2. If p∗4 = 0 and p∗5 > 0, the true gradient
∇xt

g∗¬k(ϕsep(x
j
t )) is a positive scaling of the recovered gra-

dient ∇xt
g̃¬k(ϕsep(x

j
t )), i.e. there exists α > 0 such that

∇xtg
∗
¬k(ϕsep(x

j
t )) = α∇xt g̃¬k(ϕsep(x

j
t )).

Proof. First, p∗4 = 0 iff all feasible ∇xt
g¬k(ϕsep(x

j
t )) lie in
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span(∇xt
g̃¬k), as the objective of Prob. 4 is just the norm of

the coordinates of ∇xtg¬k(ϕsep(x
j
t )) in the basis of the orthog-

onal complement, i.e. there exists β ∈ R such that ∇xt
gj¬k =

β∇xt g̃
j
¬k. Second, if p∗5 > 0, then ∇xtg

j,⊤
¬k ∇xt g̃

j
¬k > 0,

for all ∇xt
gj¬k ∈ proj∇g¬k

(F). Third, by combining these

two results, we have that β∇xt g̃
j,⊤
¬k ∇xt g̃

j
¬k > 0, implying

β > 0, as ∥∇xt
g̃j¬k∥ > 0 in order for t ∈ tjtight. Finally, from

Thm. 1, we know ∇xt
g∗¬k = γ∇xt

g¬k, for some γ > 0 and
∇xt

g¬k ∈ proj∇g¬k
(F); we recover the theorem statement by

setting α = βγ.
Our approach is to use the tight points with a unique KKT-

consistent unit normal vector to train our GP constraint (see
Sec. IV-B); we call these gradients robustly-identified and their
timesteps as tjrob ⊆ tjtight, for all j = 1, . . . , Ndem.
B. Embedding KKT-based information in a Gaussian process

Let the number of robustly-identified points over all demon-
strations be Nrobust. We collect the constraint states corre-
sponding to the robustly-identified gradients and denote it
as Dκ

.
= {ϕsep(x

j
t ) | t ∈ tjrob, j ∈ {1, . . . , Ndem}} ∈

RNrobust×nc . We also collect the robustly-identified gradients
D∇

.
= {∇xtg¬k(ϕsep(x

j
t )) | t ∈ tjrob, j ∈ {1, . . . , Ndem}} ∈

RNrobust×nc . Moreover, as the value of the unknown constraint
equals zero at all robustly-identified points, we can define a
third set Dg

.
= 0Nrobust , i.e. the zero vector of size Nrobust. We

wish to learn a GP which is consistent with both the constraint
values Dg as well as the constraint gradients D∇. Note that
derivative of a GP is a GP, and the joint distribution of a GP
and its derivative is also a GP [24]; forming this joint GP
provides us an avenue for incorporating both the constraint
value and gradient information. Like the derivation of the GP
posterior without derivative observations (Sec. III-B), one can
derive the posterior distribution conditioned on the training
inputs, their derivatives, and the outputs. For brevity, please
refer to [25] for detailed derivations. For this joint GP, we
can define the training inputs and outputs as X = Dκ and
Y = [Dg,D∇], comprising the dataset D = (X,Y), and use
the negative marginal log likelihood −LMLL [23, Eq. 2.30] to
optimize the GP hyperparameters.

A key subtlety is that as the learned constraint is a GP, its
constraint value at any given query point is not deterministic;
rather, it is sampled from a Gaussian distribution whose mean
and variance is determined by the training data and the location
of the query point (i.e. g¬k(κm) ∼ N (µm, σ2

m | D, κm)).
Moreover, while the demonstrations are guaranteed safe by
assumption (i.e. g¬k(κt) ≤ 0 for all t), the stochasticity of the
GP values prevents us from enforcing that the demonstrations
are safe with probability 1, as the Gaussian has infinite support.
Instead, we select a standard deviation threshold ρ for which
we want the demonstrations to be safe and add a hinge loss
on its violation, where R =

∑Ndem
j=1 T j :

Lfeas = (1/R)
∑R

n=1 max(µ(xn | D) + ρσ(xn | D), 0). (6)

Then the full training loss is L = −LMLL + Lfeas.

C. Planning with the learned constraint
We describe a method for planning with the learned GP

constraint. As the GP is probabilistic, so is the boundary of the
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Fig. 5. Illustration of GP-CCRRT. A candidate length 2 trajectory from the
root of the RRT induces a bivariate Gaussian; its safety probability can then
be calculated by calculating the CDF of the induced Gaussian.

learned safe set S (5); thus, our planner provides probabilistic,
rather than deterministic, safety guarantees. As the dynamics
are assumed known, we only consider the uncertainty of the
GP constraint in planning. Recall that we wish to connect a
start and goal state with a dynamically-feasible trajectory ξplan

xu

that satisfies the true constraint g∗
¬k(ϕ(ξ

plan
xu )) with probability

1−δ. From the assumption (Sec. III-C) that g∗¬k is drawn from
the GP, we achieve this by satisfying the learned constraint
g¬k(ϕ(ξ

plan
xu )) with probability 1 − δ. Unlike previous work

in planning under uncertainty [19], [20], [26], we make no
structural assumptions on the dynamics or the shape of the
constraints.

We modify a constrained kinodynamic RRT [27] to plan
with the learned constraint, though our method can be adapted
to other sampling or optimization-based planners. Our planner,
which we refer to as Gaussian Process-Chance Constrained
RRT (GP-CCRRT), is presented in Alg. 1. The main novelty
of the proposed planner is its GP constraint-checker: when a
new node xq is sampled, instead of checking if xq satisfies the
timestep-independent chance constraint Pr(g¬k(ϕsep(xq)) ≤
0) ≥ 1−δ, we check if we can connect xq to the tree by exactly
evaluating the joint probability of safety for the full trajectory
from the root to the candidate node xq (line 7-8). Our ability
to efficiently compute this probability relies on the Gaussian
structure of our learned GP constraint representation. Let the
full trajectory from the root to xq , denoted ξq , be length K.
Evaluating the learned GP g¬k(·) at those K points returns
the mean and covariance matrix of the predictive posterior
distribution, which is a K-variate Gaussian (line 7). Then, the
trajectory safety probability, pqsafe

.
= Pr(

∧K
n=1(g¬k(κn) ≤ 0)),

is obtained by integrating the density of this |K|-variate Gaus-
sian from −∞ to 0 in each dimension (i.e. the cumulative dis-
tribution function, or cdf), evaluated at 0K (line 8). Highly-
optimized implementations of the multivariate Gaussian CDF
[28] enable fast CDF evaluation at planning time. Finally, node
xq is accepted if ξq is safe with at least probability 1− δ (line
8). We visualize the GP constraint check in Fig. 5.

V. RESULTS

We evaluate our method on learning complex, nonlinear
constraints demonstrated on a car, quadrotor, and arm. Please
see the video for visualizations. We train all GPs using
GPyTorch with an RBF kernel using the Adam optimizer.
We obtain demonstrations by solving Prob. 1 using IPOPT
[29]. We compare with two baselines. The first, [4, Prob. 4],
approximates the unknown constraint as a union of B axis-
aligned boxes (as in [6, Sec. 4.4]). In the second, we use a
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Algorithm 1: GP-CCRRT
Input: xI , xG, ϵ, goal bias

1 Tx ← {xI}, Tu ← {}
2 while True do
3 xdesired ← SampleState(goal bias)
4 xnear ← NearestNeighbor(Tx, xdesired)
5 ξprev ← PathFromRoot(xnear)
6 xq, uq → ShootToDesired(xnear, xdesired)
7 µ,Σ← g¬k(ϕ(ξprev ∪ xq))
8 if cdf(N (µ,Σ),0) ≥ 1− δ then

(Tx, Tu)← (Tx, Tu) ∪ (xq, uq)
9 if ∥xq − xG∥ ≤ ϵ then

10 return ξplan
xu ← ConstructPath(Tx, Tu, xq)

Tight pointsRobust 
gradient 
points

Gradients

Demonstrations

True 
constraint

(A) (B)

Fig. 6. 5D
car example.
(A) Hilly terrain
map. (B) Demos;
identified tight
points (red);
robustly-identified
timesteps (green);
robustly-identified
gradients (blue).

neural network (NN) instead of a GP to fit the constraint using
the same data; in all examples, the NN has 5 hidden layers
of size 256, 512, 1024, 512, and 128 and is trained for 200
epochs with learning rate 5× 10−5. To train the NN, we use
mean squared error losses on the target tight constraint values
and gradients, as well a hinge loss that encourages all points
to be feasible. We also compute (Table I) how many states
are falsely claimed safe (“false safe (FS)”) or unsafe (“false
unsafe (FU)”) by setting S = {κ | µ(κ | D)+τσ(κ | D) ≤ 0}
for standard deviations τ ∈ {0, 1, 2, 2.33}. While S is not
used in GP-CCRRT (it uses joint instead of individual safety
probabilities), it is a good surrogate for constraint accuracy.
Finally, Probs. 2-5 are all solved in 0.5 seconds.

Our method Baselines
0σp 1σp 2σp 2.33σp [4] NN

Car FS (%) 1.741 0.319 0.071 0.042 5.947 15.555
FU (%) 0.424 58.761 64.807 66.305 0.117 0.000

Box FS (%) 3.230 0.462 0.189 0.138 0.000 10.859
FU (%) 1.648 81.146 86.641 87.190 0.000 0.000

Tree FS (%) 0.593 0.057 0.004 0.000 14.867 23.427
FU (%) 0.729 11.108 31.412 37.773 0.160 0.000

Arm FS (%) 1.403 0.163 0.012 0.003 17.179 15.029
FU (%) 0.658 57.294 70.644 73.490 0.808 0.151

TABLE I
GP CLASSIFICATION ERRORS (FALSE SAFE (FS); FALSE UNSAFE (FU)).

5D nonholonomic car: We first evaluate our method on a 5D
car, showing that can learn a nonlinear, disconnected constraint
without prior knowledge. Consider an autonomous vehicle
driving on hilly terrain (Fig. 6.A) which must stay below
a maximum elevation; the corresponding unsafe set (i.e. the
subset of the map above the elevation limit) is the filled-in
region in Fig. 6.B. We use the second-order unicycle dynamics
from [27, Eq. 13.46] with a discretization time of ∆T = 0.5.
Prior work [5] studied a similar example; however, in [5], the
map (i.e. the constraint representation) is given, so the only
the elevation threshold must be learned. In contrast, we are
not given the map, and must learn the representation jointly
with the threshold – a much harder problem.

(A) (B) (C)

(D) (E) (F)

Fig. 7. 5D car example, learned. (A) Learned GP constraint, mean function.
(B) Mean function misclassifications. (C) Constraint learned using baseline
[4]. (D) Learned GP constraint, buffered by GP uncertainty. (E) Buffered
misclassifications. (F) Plans computed using learned GP constraint.

We obtain 9 demonstrations minimizing the xy-space path
length, and a control constraint of ∥ut∥22 ≤ 5 is imposed
for all time. Here, ϕsep maps to the xy-state components. By
solving Prob. 2, we identify tight points (Fig. 6.B, red). Next,
by solving Probs. 3-5, we find robustly-consistent gradients
(Fig. 6.B, blue arrows) at a subset of the tight points (Fig.
6.B, green). Note the accuracy of Prob. 2, which identifies
that the cyan trajectory is not tight, despite it curving due to
dynamical constraints, and correct identification for the black
trajectory, which makes and breaks contact with the constraint
boundary. The few tight points that are not identified (e.g. near
[−2, 2]) are where the constraint boundary is flat; thus, the
sub-trajectory is optimal despite being on the boundary (Fig.
3.C). Note that most tight points also have robustly-identifiable
gradients; the exceptions are before/after the system leaves the
constraint boundary; this is due to the dynamics, as the car
may brake/turn to prevent constraint violation, expanding the
set of consistent gradients.

We train the GP for 150 epochs at learning rate 0.08. In Fig.
7, we show the GP accuracy and compare with the baseline [4].
Overall, the GP mean faithfully recreates the true unsafe set
(Fig. 7.A), though it misclassifies (Fig. 7.B) the center of the
middle and top obstacles; this is as there are few tight points in
that area. Still, when buffering the GP with its uncertainty (Fig.
7.D-E), the regions which are falsely classified shrink (see
Table I), though this is at the cost of conservatively marking
much of the map far from the demonstrations as unsafe. This
arises from the GP’s ability to capture epistemic uncertainty
and can actually be desirable as it leads to cautious plans that
remain near the data and away from unseen constraints that
are inactive on the demonstrations. For the baseline [4], we
use 20 boxes and terminate the optimization after 60 minutes.
The result has higher error than the learned GP constraint and
fails to capture the constraint shape. The NN baseline is also
inaccurate, as it drives the value of most tight points to 0 but
fails to fit the gradient data (Table I). Finally, we plan with
GP-CCRRT with a safety probability of 0.9; five plans are
shown in Fig. 7.F, which all satisfy g∗¬k(·). On average, our
planner solves in 3 minutes, with 20 and 50 percent of that
time being dedicated to GP posterior and CDF computation,
respectively; this can be sped up via lazy checking of the
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CDF constraint. Overall, this example suggests we can learn
nonconvex constraints with minimal a priori knowledge.
12D quadrotor: We evaluate our method on two constraint
learning tasks on a 12D quadrotor (see [30, Eq. 19] for the
dynamics). We first show our method achieves comparable
performance with [4] for learning constraints that can be
represented as a union of boxes. We are given 24 short
demonstrations (Fig. 8.A) that minimize xyz path length
while satisfying a control constraint ∥ut∥22 ≤ 100, for all t.
Moreover, the baseline [4] is also provided the information
that the constraint can be represented as a union of two axis-
aligned boxes (thus learning the constraint exactly). We train
the GP for 600 epochs at learning rate 0.1, and the learned GP
(Fig. 8.B) captures the union-of-boxes shape well. Two main
inaccuracies are A) the interior of the learned box is hollow
(this is expected, as no data can be collected in the obstacle)
and B) there are some “ringing effects” (this is caused by
the GP, which favors smooth functions, attempting to fit the
discontinuous box gradients). Numerically, Table I shows that
the GP misclassifications are low, and moreover, the number
of states that are falsely claimed to be safe can be driven near
zero by buffering with the GP uncertainty. The GP outperforms
the NN baseline, which again struggles to fit the gradient data.
Overall, this example suggests our method also performs well
where previous methods excel.

Next, we evaluate our approach on learning a complex
nonlinear constraint which is well beyond the capability of
the baseline [4]. We are given 25 demonstrations (Fig. 1.A,
black) avoiding collisions with an unknown tree-like obstacle
to be learned, which is a union of three ellipsoids (Fig. 1.A,
blue). Crucially, we lack a priori knowledge on the structure of
g∗¬k(·). The dynamics and cost function used are as in [9] and
[4], respectively, and ϕsep maps to the xyz-state components.
We train the GP for 150 epochs at learning rate 0.08. In
comparing with the baseline, we use 6 axis-aligned boxes and
time out the optimization after 2 hours.

We visualize our results in Fig. 1.B-C. Our learned GP
is visually accurate (Fig. 1.B), with minor errors (Fig. 1.C)
where there are no tight points. This is reasonable, as we
cannot expect the GP to be accurate far from the data. In
contrast, the baseline [4] is inaccurate (Fig. 1.D), failing to
cover the upper portion of the obstacle; moreover, the shape
is inaccurate due to the limitations of axis-aligned boxes. The
NN baseline is also inaccurate, failing to fit the constraint
gradients (Table I). Numerical results in Table I suggest that
the GP mean is the most accurate when considering both
metrics. As before, the “False Safe” rate can be made smaller
at the cost of conservativeness by buffering with the predictive
uncertainty. In contrast, the baseline has a high “False Safe”
rate, which can lead to constraint violation in planning. We
show six plans computed via GP-CCRRT (Fig. 1.A, gold),
which are safe with probability at least 0.9, and which are
safe for the true constraint. On average, planning takes 90
seconds; 55 and 20 percent of this is due to GP posterior and
CDF calculations. This example suggests our method scales
to complex constraints on high-dimensional systems while
requiring minimal prior information.
Planar 3-link manipulator: Finally, we evaluate our method

(A) (B) (C)

Fig. 8. 12D quadrotor box example. (A) Two box obstacles; demonstrations.
(B) Learned GP constraint (mean). (C) GP misclassifications (mean).

(A) (B) (C)

(D) (E) (F)

Fig. 9. 3-link planar arm example, learned. (A) True C-space constraint;
plans found using GP constraint (gold). (B) Learned GP constraint, mean
function. (C) Mean function misclassifications. (D-E) Plans computed using
learned GP constraint (workspace). (F) Constraint learned with baseline [4].

on a kinematic planar 3-link arm. The arm is mounted at the
origin and must avoid a blue nonconvex workspace obstacle
(Fig. 9.D, E). To show that our method can learn complex
constraints on articulated robots, we learn the configuration
space (C-space) representation of the obstacle (Fig. 9.A, blue),
which is also nonconvex. We obtain 50 demonstrations (Fig.
9.A, black) which minimize the joint-space path length, i.e.
c(ξxu) =

∑T
t=1 ∥qt+1 − qt∥2 subject to a control constraint

∥qt+1 − qt∥ ≤ 0.1, for all t. We train the GP for 150 epochs
at learning rate 0.08, obtaining a GP whose posterior mean
is visually consistent with the true constraint (Fig. 9.B). The
posterior mean misclassifications are mostly on the interior
of the C-space obstacle (as expected, since no data can be
collected there), as well as minor errors on the constraint
surface which are further away from the data. We plan via
GP-CCRRT, taking two minutes on average, where 40 and
45 percent of the time is due to GP posterior and CDF
computations, respectively. We use GP-CCRTT to obtain plans
that are safe with probability greater than 0.9; time-lapses of
two such plans are shown in Fig. 9.D-E. Finally, we evaluate
the baseline [4] with 10 boxes, timing out the optimization
after 6 hours. Due to the number of demonstrations and con-
straint parameters, the baseline struggles (Fig. 9.F), returning
boxes that do not adequately satisfy the KKT conditions and
fail to capture the features of the true constraint. As before,
the posterior mean has low “false safe” and “false unsafe”
rates, and the “false safe” rate can be reduced via buffering
(see Table I). In contrast, the baseline has a much higher
“false safe” rate, since it fails to cover most of the unsafe
set, though it has a low “false unsafe” rate, since it marks
most of the space as safe. The NN baseline also fails to fit
the gradient data, leading to low accuracy (Table I). Overall,
this example suggests that we can learn non-convex, non-
workspace constraints on articulated robots while requiring



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

minimal prior information, which is a necessity for C-space
obstacles, which can be unintuitive.

VI. DISCUSSION AND CONCLUSION

In this paper, we learn constraints from demonstrations with
minimal a priori knowledge by finding where the unknown
constraint is tight and a scaling of its gradient at those points
via the KKT conditions, and then training a GP-represented
constraint that is consistent with and generalizes this data. We
also show that the Gaussian structure of the GP uncertainty
can exploited in an RRT-based planner to compute plans which
satisfy the unknown constraint with a specified probability.
Our results on a 5D car, 12D quadrotor, and 3-link planar
arm show we can learn complex constraints on realistic
systems which prior methods cannot handle. We conclude by
discussing design choices and future work.
Why use a GP constraint representation? Our learning
problem (fitting a function using zero level set data (the tight
points) and its gradients at those points) closely relates to
fitting manifolds [31] and signed distance functions [32] to
data (though our method differs greatly in how it obtains the
data, i.e. the KKT conditions). In both [31] and [32], neural
networks (NN) are used to fit large datasets on the order of
103 ∼ 104 and 105 for [31] and [32], respectively. In Sec. V,
we show that in training the NN with only ∼ 102 tight data
points, the NN failed to provide an accurate fit. In contrast,
derivative data can be directly embedded via the joint GP,
which fits the constraint better with less data (on the order
of 102). Moreover, GPs handle constraint uncertainty in a
principled way, which is crucial for safe planning.
Limitations and future work: First, as GPs are non-
parametric, dense coverage of the constraint space with tight
points is needed to reduce the predictive uncertainty. This
results in cautious plans that stay near the training data,
and may needlessly restrict the robot. In future work, we
will explore semi-parametric models which combine a known,
insufficient parameterization with a non-parametric GP to re-
duce uncertainty. Second, our method assumes demonstrations
are precisely locally-optimal, but this is often untrue due
to noisy observations or partial observability [33]; in future
work, we will investigate suboptimality models (e.g. [34]) that
can be used to adjust the confidence in extracted constraint
value/gradient data. Third, we wish to extend our method to
time-varying (e.g. temporal logic [35]) constraints. Finally, the
scaling of GPs may hamper the learning of high-dimensional
constraints; thus, we will explore scalable GP variants (e.g.
sparse spectrum GP regression [36]).
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